

TEST REPORT Engineering recommendation G99

Requirements for the connection of generation equipment in parallel with public distribution networks

Report reference number::	PVGB2401WDG0057-2
Date of issue	2024-01-19
Total number of pages	101
Testing laboratory name: :	Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch
Address	No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China
Accerditation	ACCREDITED Certificate # 2951.01
Applicant's name:	Jiangsu Hanchu Energy Technology Co., Ltd
Address:	No. 588, Jinhui Road, Huishan District, Wuxi City, Jiangsu Province, China
Test specification	
Standard	G99/1-9:2022
	A2-3 Tests for a Type A Inverter Connected Power Generating Modules
Certificate:	Certificate of compliance
Test report form number	G99-1 VER.3
Master TRF	Dated 2022-11-01
Test item description	Photovoltaic (PV) and battery inverter
Trademark:	I HANCHU ESS
Model / Type:	HESS-HY-T-12K, HESS-HY-T1-12K
<u>business/cps/about-us/terms-conditions/</u> and is intended for your exclus permitted only with our prior written permission. This report sets forth our representative of the quality or characteristics of the lot from which a test tests requested by you and the results thereof based upon the information tests requested by you and the results thereof based upon the information.	is of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our- ive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is r indings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or t sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the on that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of urement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report

representative of the quality or characteristics of the fot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless othenwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 1 of 101

Ratings	HESS-HY-T-12K	HESS-HY-T1-12K
Max. input PV voltage [V]	11	00
Input PV voltage range [V]	200-950	200-950
Max. Input PV current [A]	2*20,0	3*16,0
Input Battery voltage range [V]:	120	-600
Max. Battery current [A]	30,0	30,0
Output AC voltage [V][Grid]:	3L/N/PE, 2	230V, 50Hz
Nominal Output AC current [A] [Grid]:	17,4	17,4
Max. Output AC current [A] [Grid]::	19,2	19,2
Nominal Output power [kW] [Grid]:	12,0	12,0
Max. Output power [kVA] [Grid]:	12,0	12,0
Output AC voltage [V][EPS]:	3L/N/PE, 2	230V, 50Hz
Nominal Output AC current [A] [EPS]:	17,4	17,4
Max. Output AC current [A] [EPS]::	19,2	19,2
Nominal Output power [kW] [EPS]:	12,0	12,0
Max. Output power [kVA] [EPS]:	12,0	12,0

Testing Location : Address :	Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China	
Tested by (name and signature):		
Approved by (name and signature):	Ken Chan	
Manufacturer's name:	Jiangsu Hanchu Energy Technology Co., Ltd	
Manufacturer address:	No. 588, Jinhui Road, Huishan District, Wuxi City, Jiangsu Province, China	
Factory's name:	AISWEI New Energy Technology (Yangzhong) Co., Ltd	
Factory address:	No.588 Gangxing Road, Economic Development Zone, 212200 Yangzhong, Jiangsu Province, P.R.China	

Document History			
Date	Internal reference	Modification / Change / Status	Revision
2023-01-19 Ryan He		This is a copy report, the test results is based on the original test report PVGB2306WDG0281-2, issue by Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch, dated on 2023-10-23.	0
Supplementary	ninformation:	ualeu 011 2023-10-23.	

Test items particulars	
Equipment mobility	Permanent connection
Operating condition	Continuous
Class of equipment	Class I
Protection against ingress of water:	IP66 according to EN 60529
Mass of equipment [kg]	Approx. 26kg for all model
Test case verdicts	
Test case does not apply to the test object	N/A
Test item does meet the requirement:	P(ass)
Test item does not meet the requirement:	F(ail)
Testing	
Date of receipt of test item	2023-03-23
Date(s) of performance of test:	2023-03-23 to 2023-10-23
General remarks:	
The test results presented in this report This document may be published or pa Bureau Veritas Shenzhen Co., Ltd. Dor	ssed on in full only. Extraction of parts needs the written permission of
Conformity statements are decided in ad unless otherwise normatively specified of	ccordance with IEC GUIDE 115:2021 Procedure 2 (accuracy method), or contractually agreed.
"(see Annex #)" refers to additional info "(see appended table)" refers to a table	
Throughout this report a comma is use	d as the decimal separator.
• "P _n " for the nominal active pow	er:
$P_n = V_n \times I_n \times \cos \phi_n$ (single-Ph	ase); $P_n = \sqrt{3} V_n \times I_n \times \cos \varphi_n$ (three-Phase)
• "Pm" for the momentary power	
 "(c)" for over-excited 	

• "(i)" for under-excited

Active and reactive power: The regarded system of the voltage and current vectors is the load view (Figure 2): if the inverter feeds to the grid the active power is measured with negative sign. For the sake of • reading the document the measured active infeed power has a positive sign. P > 0Figure 1 For the representation in quadrants, a power circle is chosen whose representation is compatible with mathematical representations of trigonometry and complex numbers (see Figure 2). Angles are counted positively counter-clockwise as in mathematics. The phase angle is defined as the angle from the current pointer to the voltage pointer. The current pointer is always in the real axis; the position of the voltage pointer corresponds to the apparent power and the phase angle. pos. Q induktiv inductive Q 90° generatorisch, induktiv motorisch, induktiv generator, inductive motor, inductive pos. P neg. P neg. cos Phi pos. cos Phi pos. Q pos. Q Quadrant II Quadrant I S C neg. P pos. P 180 Phi 0 Einspeisung Bezug P infeed consumption Quadrant IV Quadrant III generatorisch, kapazitiv motorisch, kapazitiv generator, capacitive motor, capacitive neg. P pos. F neg. cos Phi pos. cos Phi 270° nea. Q neg. Q neg. Q kapazitiv capacitive Figure 2 The different operating states can be represented in guadrants I to guadrant IV. The guadrants are named in a counter-clockwise direction. Quadrant I: Ohmic inductive load (coil) . Quadrant II: One active power supplying generation plant with simultaneous reactive power • consumption Quadrant III: A generation plant supplying active and reactive power Quadrant IV: Ohmic-capacitive load (capacitor) •

This Test Report consists of the following documents:

- 1. Test Results
- 2. Annex No. 1 EMC report
- 3. Annex No. 2 Pictures of the unit
- 4. Annex No. 3 Test equipment list

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch

Copy of marking plate:

1 HANCHU ESS

Model: HESS-HY-T-12K

	Max. PV input power	18000Wp
5	Max. PV input voltage	d.c. 1100V
PV input	MPP voltage range	d.c. 200-950V
	Max. PV input current	d.c. 2X20A
	Isc PV (absolute maximum)	d.c. 2X30A
5	Max. charge/discharge power	12000W/12000W
Battery input	Battery voltage range	d.c. 120-600V
tten	Max. battery charge/discharge current	d.c. 30A/30A
Ba	Battery type	LiFePO4
	Rated grid voltage	3/N/PE~400V
Ħ	Rated grid frequency	50Hz/60Hz
Grid output	Rated grid output apparent power	12000VA
rido	Max. grid output apparent power	12000VA
G	Rated grid output current	17.4A
	Max. grid output current	19.2A
	Rated grid voltage	3/N/PE~400V
Grid input	Rated grid frequency	50Hz/60Hz
irid	Max. grid input apparent power	24000VA
U	Max. grid input current	34.8A
	Rated output voltage	3/N/PE~400V
out	Rated output frequency	50Hz/60Hz
EPS output	Rated output apparent power	12000VA
EPS	Max. output apparent power	12000VA
	Rated output current	17.4A
	Adjustable cos(φ)	0.8ind0.8cap
c	Operating temperature range	-25+60°C
atio	Inverter topology	Non-Isolated
nformation	Ingress protection	IP66
.⊆	Protective class	1
	Overvoltage category	II(PV), III(MAINS)

I HANCHU ESS

Model: HESS-HY-T1-12K

	Max. PV input power	18000Wp
PV input	Max. PV input voltage	d.c. 1100V
	MPP voltage range	d.c. 200-950V
	Max. PV input current	d.c. 3X16A
	lsc PV (absolute maximum)	d.c. 3X24A
5	Max. charge/discharge power	12000W/12000W
Battery input	Battery voltage range	d.c. 120-600V
tten	Max. battery charge / discharge current	d.c. 30A/30A
Ba	Battery type	LiFePO4
	Rated grid voltage	3/N/PE~400V
÷	Rated grid frequency	50Hz/60Hz
uthr	Rated grid output apparent power	12000VA
Grid output	Max. grid output apparent power	12000VA
U	Rated grid output current	17.4A
	Max. grid output current	19.2A
ц.	Rated grid voltage	3/N/PE~400V
Grid input	Rated grid frequency	50Hz/60Hz
Brid	Max. grid input apparent power	24000VA
U I	Max. grid input current	34.8A
	Rated output voltage	3/N/PE~400V
out	Rated output frequency	50Hz/60Hz
EPS output	Rated output apparent power	12000VA
EPS	Max. output apparent power	12000VA
	Rated output current	17.4A
	Adjustable cos(φ)	0.8ind0.8cap
c	Operating temperature range	-25+60°C
eral	Inverter topology	Non-Isolated
General	Ingress protection	IP66
2,	Protective class	1
	Overvoltage category	II(PV), III(MAINS)

Support DRMO

Jiangsu Hanchu Energy Technology Co.,LTD Web: www.hanchuess.com Add.: No.588,Jinhui Road,Huishan District ,Wuxi City,Jiangsu Province,China

532-100006-00

532-100006-00

 \oslash

SN:L1102A35F0025 CODE: frNGM3PK

Meb: www.hanchues.com Add.: No.588, Jinhui Road, Huishan District , Wuxi City, Jiangsu Province, China

i

Jiangsu Hanchu Energy Technology Co.,LTD Web: www.hanchuess.com

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 6 of 101

Made in China

Made in China

General product information:

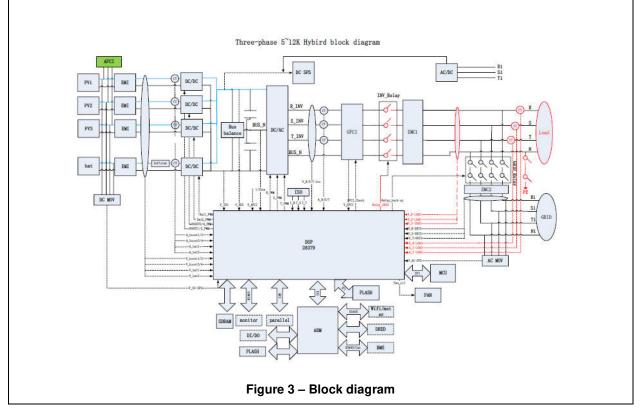
The unit converts DC voltage into AC voltage.

The unit is a three phases type inverter.

The DC input of unit can be supplied from PV array and batteries.

The input and output are protected by Varistors to Earth. The unit is providing EMC filtering at the output toward mains. The unit does not provide galvanic separation from input to output (transformerless). The output is switched off redundant by the high power switching bridge and a two relays. This assures that the opening of the output circuit will also operate in case of one error.

Description of the electrical circuit:


The internal control is redundant built. It consists of Microcontroller Main DSP (U519) and slave DSP (U536).

The Main DSP (U519) control the relays by switching signals; measures the PV voltage, PV current, Bus voltage, grid voltage, frequency, AC current with injected DC and the array insulation resistance to ground. In addition it tests the current sensors and the RCMU circuit before each start up.

The slave DSP (U536) is measures the grid voltage, grid frequency and residual current, also can switch off the relays independently, and communicate with Main DSP (U519) each other.

The current is measured by a current sensor. The AC current signal and the injected DC current signal are sent to the Main DSP (U519). The Main DSP (U519) tests and calibrates before each start up all current sensors.

The unit provides two relays in series in all output conductors. When single fault applied to one relay, alarm an error code in display panel, another redundant relay provides basic insulation maintained between the PV array and the mains. All the relays are tested before each start up.

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 7 of 101

Differences of the models:

The differences between four models refer to below description and table.

Model HESS-HY-T-12K is basic model.

Model HESS-HY-T1-12K is almost same with the model HESS-HY-T-12K but with 3 PV trackers and 6 pole DC switch.

Model number	HESS-HY-T-12K	HESS-HY-T1-12K
PV tracker's number	2	3
EPS output terminal	With	With
DC switch's pole number	4	6

Hardware version: 270-100501-01; Master Software version: V610-05001-01; Slave Software version: V610-60015-00; Safety version: V610-11022-01.

All tests were performed on HESS-HY-T-12K. Tests of the EUT of HESS-HY-T-12K not applicable for the models, HESS-HY-T1-12K were performed on the concerned models and a statement is given at the relevant test.

	Engineering recommendation G99-1			
Clause	Requirement – Test	Result – Remark	Verdict	
A. 7	Requirements for Type Testing Power Generating	Modules		
Clause A.7	 Requirement – Test Requirements for Type Testing Power Generating This Annex describes methodologies for undertaking compliance verification for Type A Power Generating Modules. The Annex describes approaches which were originally intended for small Power Park Modules. Manufacturers are free to adapt techniques described in Annex B where this is more economic or efficient, provided the Type A performance requirements are fully demonstrated. The Forms provided in Annex A.2 should be used as a basis for demonstration of compliance. Annex A.7.1 Power Park Module Requirements. Annex A.7.2 Synchronous Power Generating Module Requirements. Annex A.7.3 Additional Technology Requirements. A.7.3.1. Domestic CHP A.7.3.2. Photo-voltaic A.7.3.5. Wind A.7.3.6. Electricity Storage devices Annex A.7.1 relates to any Generating Unit that uses an Inverter (or Converter) as its means of connecting to the Distribution Network. Annex A.7.2 relates to any Synchronous Power Generating Module that during normal running 	Result – Remark	P	
	operation is connected directly to the Distribution Network and has a Rated Capacity < 50 kW, although Manufacturers may choose to use these requirements for larger Type A Synchronous Power Generating Modules. For type testing any Generating Unit select either Annex A.7.1 or Annex A.7.2 as is most appropriate			
	to the Generating Unit under test. Annex A.7.2 should also be used for asynchronous Generating Units that are not connected to the Distribution Network via an Inverter (ie induction Generating Units).			
	The Generating Unit may also require additional technology type tests as identified in Annex A.7.3.			
	Examples			
	A Wind Turbine system using an Inverter (or Inverters) for connection is required to use Annex A.7.1 – "Common Power Park Module Requirements" and Annex			
	A.7.3.5 – "Wind" Additional Technology			

Engineering recommendation G99-1			
Clause	Requirement – Test	Result – Remark	Verdict
	Requirements.		
	A Hydro system using an induction generator connected directly to the Distribution Network is suggested to use Annex A.7.2 – " Synchronous " and Annex A.7.3.4– "Hydro" Additional Technology Requirements.		
A.7.1	Power Park Module Requirements		Р
A.7.1.1	Certification & Type Testing Generating Unit Requirements	Considered. Test results see below.	Р
	A.7.1 can apply to Power Park Modules or to individual Inverters and/or Generating Units if the functionality is included in each unit of a Power Park Module . Within this Section A.7.1 the term Power Park Module will be used but its meaning can be interpreted within A.7.1 to mean Power Park Module , Generating Unit or Inverter as appropriate.		
	A.7.1 describes a methodology for obtaining type certification or type verification for a Power Park Module containing an Inverter . Typically, all interface functions are contained within the Inverter and in such cases it is only necessary to have the Inverter Type Tested . Alternatively, a package of specific separate parts of equivalent function may also be Type Tested .		
	The Interface Protection shall satisfy the requirements of all of the following standards. Where these standards have more than one part, the requirements of all such parts shall be satisfied, so far as they are applicable.		
	BS EN 61000 (Electromagnetic Standards)		
	BS EN 60255 (Electrical Relays)		
	BS EN 61810 (Electrical Elementary Relays)		
	BS EN 60947 (Low Voltage Switchgear and Control gear)		
	BS EN 61869 (Instrument Transformers: Additional requirements for current transformers)		
	Currently there are no harmonised functional standards that apply to the Power Park Module 's Interface Protection . Consequently, in cases where power electronics is used for energy conversion along with any separate Interface Protection unit they will need to be brought together and tested as a complete Power Park Module as described in this EREC G99, and recorded in format similar to that shown in Form A2-3 (Annex A.2).		
	Where the Interface Protection is physically integrated within the overall Power Park Module control system, the functionality of the Interface Protection unit should not be compromised by any		

	Engineering recommendation	011 G99-1	
Clause	Requirement – Test	Result – Remark	Verdict
	failure of other elements of the control system (fail safe). For a Full Type Tested Power Park Module the completed Power Park Module 's Interface Protection shall not rely on interconnection using cables which could be terminated incorrectly on site ie the interconnections shall be made by non- reversible plug and socket which the Manufacturer has made and tested prior to delivery to site.		
	Where Type Tested components are wired together on site, ie not using specifically designed plugs and sockets for the purpose, it will be necessary to		
	prove that all wiring has been correctly terminated by proving the functions which rely on the wiring at the time of commissioning as detailed in paragraph 15.2 and Form A2-4 (Annex A.2).		
	This Annex is primarily designed for the testing of three phase Power Park Modules . However, where practicable, a single phase, or split phase test may be carried out if it can be shown that it will produce the equivalent results.		
	This Annex applies to Power Park Module s either with or without load management or Electricity Storage devices connected on the prime mover side of the Power Park Module .		
A.7.1.2	Type Verification Functional Testing of the Interface Protection	Considered.	Р
	Type Testing is the responsibility of the Manufacturer . This test will verify that the operation of the Power Park Module Interface Protection shall result:	Test results see below.	
	a) in the safe disconnection of the Power Park Module from the DNO 's Distribution Network in the event that system parameters exceed the protection settings specified in Table 10.1; and		
	b) in the Power Park Module remaining connected to the DNO 's Distribution Network while Distribution Network conditions are:		
	(1) within the envelope specified by the settings plus and minus the tolerances specified for equipment operation in Table 10.1; and		
	(2) within the trip delay settings specified in Table 10.1.		
	Wherever possible the type testing of a Power Park Module designed for a particular type of prime mover should be proved under normal conditions of operation for that technology (unless otherwise noted).		
A.7.1.2.1	Disconnection times	Considered.	Р
	The minimum trip time delay settings, for over / under voltage, over / under frequency and loss of	Test results see below.	

Clause	Engineering recommendation	Result – Remark	Verdict
Clause	mains tests below, are presented in Table 10.1.	nesuli – neillaik	veraici
	For over / under voltage, over / under frequency and loss of mains tests, reconnection shall be checked as detailed below.		
4.7.1.2.2	Over / Under Voltage	Considered.	Р
	The Power Park Module shall be tested by operating in parallel with a variable AC test supply, see Figure A.7.1. Correct protection and ride- through operation shall be confirmed during operation of the Power Park Module . The set points for over and under voltage at which the Power Park Module disconnects from the supply will be established by varying the AC supply voltage.	Test results see below.	
	To establish the trip voltage, the test voltage should be applied in steps of $\pm 0.5\%$ or less, of the voltage setting for a duration that is longer than the trip time delay, for example 1 s in the case of a delay setting of 0.5 s starting at least 4 V below or above the setting. The test voltage at which this trip occurred is to be recorded. Additional tests just above and below the trip voltage should be undertaken to show that the test is repeatable and the figure at which a repeatable trip occurs should be recorded on the type verification test report Annex A.2-3.		
	To establish the trip time, the test voltage should be applied starting from 4 V below or above the recorded trip voltage and should be changed to 4 V above or below the recorded trip voltage in a single step. The time taken from the step change to the Inverter tripping is to be recorded on the type verification test report Annex A.2-3.		
	To establish correct ride-through operation, the test voltage should be applied at each setting ± 4 V and for the relevant times shown in the Table in Annex A.2-3.		
	For example to test over voltage setting stage 1 which is required to be set at nominally 262.2 V the circuit should be set up as shown below and the voltage adjusted to 254.2 V. The Power Park Module should then be powered up to export a measurable amount of energy so that it can be confirmed that the Power Park Module has ceased to output energy. The variable voltage supply is then increased in steps of no more than 0.5% of nominal (1.15 V) maintaining the voltage for at least 1.5 s (trip time plus 0.5 s) at each voltage level. At each voltage level confirmation that the Power Park Module has not tripped after the time delay is required to be taken. At the voltage level at which a trip occurs then this should be recorded as the provisional trip voltage. Additional tests just below and if necessary just above the provisional trip		

N 1	Engineering recommendation G99-1				
lause	Requirement – Test	Result – Remark	Verdict		
	established on a repeatable basis. This value should be recorded. For the sake of this example the actual trip level is assumed to have been established as being 261 V. The variable voltage supply should be set to 257 V the Power Park Module set to produce a measurable output and then the voltage raised to 265 V in a single step. The time from the step change to the output of Power Park Module falling to zero should be recorded as the trip time.				
	The Power Park Module then needs to operate at 4 V below the nominal over voltage stage 1 setting which is 258.2 V for a period of at least 2 s without tripping and while producing a measurable output. This can be confirmed as a no trip in the relevant part of Annex A.2-3. The voltage then needs to be stepped up to the next level of 269.7 V for a period of 0.98 s and then back to 258.2 V during which time the output of the relay should continue with no interruption though it may change due to the change in voltage, this can be recorded as a no trip for the second value. The step up and step down test needs to be done a second time with a max value of 277.7 V and with a time of 0.48 s. The Power Park Module is allowed to shut down during this period to protect its self as allowed by note 1 of Table 10.1, but it shall resume production again when the voltage has been restored to 258.2 V or it may continue to produce an output during this period. There is no defined time for resumption of production but it shall be shown that restart timer has not operated so it will begin producing again in less than 20 s.				
	Note that this philosophy should be applied to the under voltage, over and under frequency, RoCoF and Vector shift stability tests which follow.				
	Note:				
	 The frequency required to trip is the setting ± 0.1 Hz Measurement of operating time should be measured at a value of 0.3 Hz 				
	(suggestion – 2 x tolerance) above/below the setting to give "positive" operation				
	(3) The "No trip tests" need to be carried out at the relevant values and times as shown in the table in Annex A.2-3 to ensure that the protection will not trip in error.				
	Power Park Module Prime mover or Simulator				
	Figure A.7.1. Power Park Module test set up – over / under voltage				
	Over / Under Frequency	Considered.	Р		
.7.1.2.3		001010101010			

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 13 of 101

Engineering recommendation G99-1				
lause	Requirement – Test	Result – Remark	Verdict	
	frequency test supply system, see Figure A.7.2. Correct protection and ride-through operation should be confirmed during operation of the Power Park Module . The set points for over and under frequency at which the Power Park Module system disconnects from the supply will be established by varying the test supply frequency.			
	To establish a trip frequency, the test frequency should be applied in a slow ramp rate of less than 0.1 Hzs-1, or if this is not possible in steps of 0.05 Hz for a duration that is longer than the trip time delay, for example 1 s in the case of a delay setting of 0.5 s. The test frequency at which this trip occurred is to be recorded. Additional tests just above and below the trip frequency should be undertaken to show that the test is repeatable and the figure at which a repeatable trip occurs should be recorded on the type verification test report Annex A.2-3.			
	To establish the trip time, the test frequency should be applied starting from 0.3 Hz below or above the recorded trip frequency and should be changed to 0.3 Hz above or below the recorded trip frequency in a single step. The time taken from the step change to the Power Park Module tripping is to be recorded on the type verification test report Annex A.2-3. It should be noted that with some loss of mains detection techniques this test may result in a faster trip due to operation of the loss of mains protection. There are two ways around this. Firstly the loss of mains protection may be able to be turned off in order to carry out this test. Secondly by establishing an accurate frequency for the trip a much smaller step change could be used to initiate the trip and establish a trip time. This may require the test to be repeated several times to establish that the time delay is correct.			
	To establish correct ride-through operation, the test frequency should be applied at each setting \pm 0.2 Hz and for the relevant times shown in the table in Annex A.2-3.			
	Power Park Module Prime Mover or Simulator Inverter Variable Frequency Test Supply			
	\rightarrow \rightarrow			
	Figure A.7.2 Power Park Module test set up – over / under frequency			
.7.1.2.4	Loss of Mains Protection	Considered.	Р	
			1	

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 14 of 101

	Engineering recommendati	on G99-1	
Clause	Requirement – Test	Result – Remark	Verdict
	recorded as indicated in the Protection – loss of mains test section of Annex A.2-3 Type Test Verification Report.		
	Multi phase Power Park Modules should be operated at part load while connected to a network running at about 50 Hz and one phase only shall be disconnected with no disturbance to the other phases. The Power Park Module should trip within 1 s. The test needs to be repeated with each phase disconnected in turn while the other two phases remain in operation and the results recorded in the Type Test declaration.		
A.7.1.2.5	Re-connection	Considered.	Р
	The tests should be carried out in accordance with BS EN 62116 and a subset of results should be recorded as indicated in the Protection – loss of mains test section of Annex A.2-3 Type Test Verification Report.	Test results see below.	
	Multi phase Power Park Modules should be operated at part load while connected to a network running at about 50 Hz and one phase only shall be disconnected with no disturbance to the other phases. The Power Park Module should trip within 1 s. The test needs to be repeated with each phase disconnected in turn while the other two phases remain in operation and the results recorded in the Type Test declaration.		
A.7.1.2.6	Frequency Drift and Step Change Stability test.	Considered.	Р
	The tests will be carried out using the same circuit as specified in A.7.1.2.3 above and following confirmation that the Power Park Module has passed the under and over frequency trip tests and the under and over frequency stability tests.	Test results see below.	
	Four tests are required to be carried out with all protection functions enabled including loss of mains. For each stability test the Power Park Module should not trip during the test.		
	For the step change test the Power Park Module should be operated with a measurable output at the start frequency and then a vector shift should be applied by extending or reducing the time of a single cycle with subsequent cycles returning to the start frequency. The start frequency should then be maintained for a period of at least 10 s to complete the test. The Power Park Module should not trip during this test.		
	For frequency drift tests the Power Park Module should be operated with a measurable output at the start frequency and then the frequency changed in a ramp function at 0.95 Hzs-1 to the end frequency. On reaching the end frequency it should be maintained for a period of at least 10 s. The Power		

Clause	Requirement – Test	Result – Remark	Verdict
	Park Module should not trip during this test.		
	The results shall be recorded on the test sheet of Annex A.2-3.		
.7.1.3	Limited Frequency Sensitive Mode – Over	Considered.	Р
	(LFSM-O)	Test results see below.	
	There are two possible approaches to demonstrating LFSM-O . The first to use the test set up of Figure A.7.2. The second approach can be used where it is possible to inject a frequency control signal into the Power Generating Module . The Manufacturer or Generator can choose which is the more appropriate test for the Power Generating Module .		
	The test below uses the test set up of Figure A.7.2 to demonstrate LFSM-O using a variable frequency supply. The alternative approach is covered in A.7.2.4.		
	The test should be carried out above 80% Registered Capacity and repeated at 40-60% Registered Capacity using the specific threshold frequency of 50.4 Hz and Droop of 10%.		
	The Power Park Module should be tested at the following frequencies:		
	Step a) 50.00 Hz ±0.01 Hz		
	Step b) 50.45 Hz ±0.05 Hz		
	Step c) 50.70 Hz ±0.10 Hz		
	Step d) 51.15 Hz ±0.05 Hz		
	Step e) 50.70 Hz ±0.10 Hz		
	Step f) 50.45 Hz ±0.05 Hz		
	Step g) 50.00 Hz ±0.01 Hz		
	The frequency at each step should be maintained for at least one minute as illustrated in Figure A.7.3 and the Active Power reduction in the form of a gradient determined and assessed for compliance with paragraph 11.2.3.		
	Frequency f Hd 51.5 5		
	Figure A.7.3 Testing the Active Power feed-in of the Power Generating Module at over frequency		

	Engineering recommendation		
Clause	Requirement – Test	Result – Remark	Verdict
	measurements between 50.4 Hz and 51.15 Hz. The allowed tolerance for the frequency measurement shall be \pm 0.05 Hz. The allowed tolerance for Active Power output measurement shall be \pm 10% of the required change in Active Power . The resulting overall tolerance range for a nominal 10% Droop is +2.8% and - 1.5%, ie a Droop less than 12.8% and greater than 8.5%.		
A.7.1.4	Power Quality		Р
A.7.1.4.1	Harmonics	Considered.	Р
	The tests should be carried out as specified in BS EN 61000-3-12 and can be undertaken with a fixed source of energy at two power levels firstly between 45 and 55% and at 100% of Registered Capacity .	Test results see below.	
A.7.1.4.2	Power Factor	Considered.	Р
	The test set up shall be such that the Power Park Module supplies full load to the DNO 's Distribution Network via the Power Factor (pf) meter and the variac as shown below in Figure A.7.3. The Power Park Module Power Factor should be within the limits given in paragraph 11.1.5, for three test voltages 0.94 pu, 1 pu V ²⁸ and 1.1 pu V. <u>Power Park Module</u> <u>Prime Mover</u> <u>inverter</u> <u>inverter</u> <u>inverter</u> <u>NOTE 1</u> NOTE 1 <u>It</u> is permissible to use a voltage regulator or tapped	Test results see below.	
	 NOTE 2: It is permissible to use a voltage regulator or tapped transformer to perform this test rather than a variac as shown. Figure A.7.3 Power Park Module test set up – Power Factor 		
	²⁸ For a LV connected Power Generating Module 1 pu V = 230 V		
A.7.1.4.3	Voltage Flicker	Considered.	Р
	The voltage fluctuations and flicker emissions from the Power Park Module shall be measured in accordance with BS EN 61000-3-11 and the technology specific Annex A.7.3. The required maximum supply impedance should be calculated and recorded in the relevant part of Compliance Verification Report in Form A2-3 (Annex A.2).	Test results see below.	
A.7.1.4.4	DC Injection	Considered.	Р
	The level of DC injection from the Power Park Module -connected prime mover in to the DNO 's Distribution Network shall not exceed the levels specified in 9.4.6 when measured during operation at three levels, 10%, 55% and 100% of rating with a tolerance of ±5%.	Test results see below.	
Purceu Verite	The DC injection requirements can be satisfied by the installation of an isolation transformer on the AC side of an Inverter -connected Power Park Module . A declaration that an isolating transformer is fitted s Shenzhen Co., Ltd. No. 96, Guantai Road (Houjie Section), Town Dearguyen City, Changdong Brit	Houjie Tel: +8	6 769 8998 209

Clause Requirement – Test Verdic				
Clause	Requirement – Test	Result – Remark	Verdict	
	can be made in lieu of the tests noted above.			
A.7.1.5	Short Circuit Current Contribution	Considered.	Р	
	Power Park Module connected Power Generating Module's generally have small short circuit fault contributions however DNOs need to understand the contribution that they make to system fault levels in order to determine that they can continue to safely operate without exceeding design fault levels for switchgear and other circuit components.	Test results see below.		
	The following type tests shall be carried out and the results noted in Annex A.2-3.			
	a B C DC supply to AC C V D Inverter So Hz C V D Inverter Figure A.7.4 Power Park Module short circuit test circuit			
A.7.1.6	Self-Monitoring - Solid State Disconnection	Considered.	Р	
	Some Power Park Modules include solid state switching devices to disconnect from the DNO 's Distribution Network . In this case paragraph 9.7.9 requires the control equipment to monitor the output stage of the Power Park Module to ensure that in the event of a protection initiated trip the output voltage is either disconnected completely or reduced to a value below 50 V AC. This shall be verified either by self-certification by the Manufacturer , or additional material shall be presented to the tester sufficient to allow an assessment to be made.	Test results see below		
A.7.1.7	Power Park Modules which include Electricity Storage	Considered.	Р	
	This paragraph provides a method for demonstrating compliance with the optional performance characteristic as discussed in the foreword. The tests shall be carried out to demonstrate how the Power Park Module Active Power when acting as a load (ie replenishing its energy store) responds to changes in system frequency.	Test results see below.		
	In general, four tests are proposed, one set of two at Rated Import Capacity , and one set of two at 40% of Rated Import Capacity .			
	In both cases the test is to reduce frequency from 50 Hz at 2 Hzs ⁻¹ . In the first case the lower frequency reached will be 49.0 Hz and the second case the lower frequency will be 48.8 Hz.			
	In all cases the response shall meet the requirements of 11.2.3.3.			
A.7.2	Synchronous Power Generating Module Requiren	nents (up to and including	N/A	

	Engineering recommendation G99-1			
Clause	Requirement – Test	Result – Remark	Verdict	
	50 kW)	1		
A.7.2.1	Certification & Type Testing Generating Unit Requirements	No synchronous Power Generating Module	N/A	
	This Annex describes a methodology for obtaining type certification or type verification for a Synchronous Power Generating Module in conjunction with Form A2-1. Other compliance requirements are detailed in Form A2-2 which may be used as an alternative to this Annex.			
	The Interface Protection of the Synchronous Power Generating Module shall satisfy the requirements of all of the following standards. Where these standards have more than one part, the requirements of all such parts shall be satisfied, so far as they are applicable.			
	BS EN 61000 (Electromagnetic Standards)			
	BS EN 60255 (Electrical Relays)			
	BS EN 61810 (Electrical Elementary Relays)			
	BS EN 60947 (Low Voltage Switchgear and Control gear)			
	BS EN 61869 (Instrument Transformers: Additional requirements for current transformers)			
	Currently there are no harmonised functional standards that apply to the Power Generating Module Interface Protection , therefore in order to achieve Type Tested status the Power Generating Module and any separate Interface Protection unit will require their functionality to be Type Tested as described in this Annex, and recorded in format similar to that shown in Annex A.2-1.			
	Where the Interface Protection is physically integrated within the overall Power Generating Module control system, the functionality of the Interface Protection unit should not be compromised by any failure of other elements of the control system (fail safe). For a Fully Type Tested Power Generating Module the completed Power Generating Module's Interface Protection shall not rely on interconnection using cables which could be terminated incorrectly on site ie the interconnections shall be made by non-reversible plug and socket which the Manufacturer has made and tested prior to delivery to site.			
	Where Type Tested components are wired together on site, ie not using specifically designed plugs and sockets for the purpose, it will be necessary to prove that all wiring has been correctly terminated by proving the functions which rely on the wiring at the time of commissioning as detailed in paragraph 15.2 and Form A2-4 (Annex A.2).			

	Engineering recommendation					
Clause	Requirement – Test	Result – Remark	Verdict			
	Wherever possible the type testing of a Power Generating Module utilising a particular type of prime mover should be proved under normal conditions of operation for that prime mover (unless otherwise noted).					
	This Annex can also be used for asynchronous Generating Units that are not connected to the Distribution Network via an Inverter as appropriate.					
	This Annex also applies to any Synchronous Power Generating Modules that are powered by stored energy (eg compressed air), but the requirement to demonstrate the LFSM-O will not be required.					
A.7.2.2	Type Verification Testing of the Interface Protection Functions	No synchronous Power Generating Module	N/A			
	Type verification testing is the responsibility of the Manufacturer . This test will verify that the operation of the Power Generating Module Interface Protection shall result:					
	1. in the safe disconnection of the Power Generating Module from the DNO 's Distribution Network in the event that the protection settings specified in Table 10.1 are exceeded; and					
	2. in the Power Generating Module remaining connected to the DNO 's Distribution Network while network conditions are:					
	a. within the envelope specified by the settings plus and minus the tolerances specified for equipment operation in Table 10.1; and					
	b. within the trip delay settings specified in Table 10.1.					
	The Interface Protection may be incorporated into the Power Generating Module in which case it should be tested as part of the Power Generating Module. Alternatively, the constituent devices that form the Interface Protection may be discrete in which case the tests may be carried out on the discrete protection devices independently from the Power Generating Module.					
	In either case it will be necessary to verify that a protection operation will disconnect the Power Generating Module from the DNO 's Distribution Network .					
A.7.2.2.1	Disconnection times	No synchronous Power	N/A			
	he minimum trip time delay settings, for over / under voltage, over / under frequency and loss of mains tests below, are presented in Table 10.1.	Generating Module				
	For over / under voltage, over / under frequency and loss of mains tests, reconnection shall be checked					

Clause	Requirement – Tes		Result – Remark	Verdict
	as detailed below.	-		
	convenient to test the disconnection time s delay time to be mea a similar way as for a disconnection time c Generating Module accurate measureme mover characteristic total disconnection ti specified in Section disconnection time w is included in the Po	hay be safer and more e trip delay time and the eparately. This will allow the trip asured in a test environment (in a protection relay). The an be measured in the Power 's normal operation, allowing ent with correct inertia and prime s. This is permitted providing the me does not exceed the value 10.6.7.1. When measuring the where the Interface Protection wer Generating Module , 5 s Id be initiated, and the average		
.7.2.2.2	Over / Under Voltage	9	No synchronous Power	N/A
	operating the Power	ction shall be tested by Generating Module in parallel st supply, as an example see	Generating Module	
	be confirmed. The set voltage at which the disconnects from the varying the frequence disconnect sequence network conditions n accordance with the	nd ride-through operation shall et points for over and under Interface Protection e supply, will be established by y of the AC supply voltage. The e should be initiated when the nean the protection should trip in settings in Table 10.1, eration should continue.		
	should be applied in voltage setting for a trip time delay, for ex setting of 0.5 s startii the setting. Additiona trip voltage should be test is repeatable an	fied trip voltage, the test voltage steps of $\pm 0.5\%$ or less of the duration that is longer than the kample 1 s in the case of a delay ng at least 4 V below or above al tests just above and below the e undertaken to show that the d the figure at which a s should be recorded on the report Annex A.2-1.		
	should be applied sta the certified trip volta V above or below the step. The time taken Power Generating I	fied trip time, the test voltage arting from 4 V below or above age and should be changed to 4 e certified trip voltage in a single from the step change to the Module tripping is to be verification test report Annex		
	voltage should be ap	ride-through operation, the test plied at each setting \pm 4 V and s shown in the Table in Annex		
	A.2-1.	s shown in the Table in Annex over voltage setting stage 1		

	Engineering recommendation	on G99-1	
Clause	Requirement – Test	Result – Remark	Verdict
	which is required to be set at nominally 262.2 V the circuit can be set up as shown below and the voltage adjusted to 254.2 V. In integrated designs where there is no separate way of establishing that the Power Generating Module is disconnected, the Power Generating Module should be powered up to export a measurable amount of energy so that it can be confirmed that the Power Generating Module has ceased to output energy. The variable voltage supply is then increased in steps of no more than 0.5% of nominal voltage (1.15 V) maintaining the voltage for at least 1.5 s (trip time plus 0.5 s) at each voltage level. At each voltage level confirmation that the Power Generating Module has not tripped after the time delay is required to be taken. At the voltage level at which a trip occurs then this should be recorded as the provisional trip voltage. Additional tests just below and if necessary just above the provisional trip voltage will allow the actual trip voltage to be established on a repeatable basis. This value should be recorded. For the sake of this example the actual trip level is assumed to have been established as being 261 V. The variable voltage supply should be set to 257 V the Power Generating Module set to produce a measurable output (if necessary) and then the voltage raised to 265 V in a single step. The time from the step change to the disconnection of the Power Generating Module falling to zero should be recorded as the trip time.		
	To confirm that the protection does not trip before the required time, the test voltage should be applied at each setting $\pm 4V$ and for the relevant times shown in the table in Annex A.2-1.		
	Test results should be recorded on the Test Sheet shown in Annex A.2-1		
	Power Generating Module Variable AC Voltage Test Supply Image: Controller Variable AC Voltage Test Supply Image: Controller Supply Figure A.7.5 Power Generating Module test set up – over / under voltage		
.7.2.2.3	Over / Under Frequency	No synchronous Power	N/A
	The Interface Protection shall be tested by operating the Power Generating Module in parallel with a low impedance, variable frequency test supply system,	Generating Module	
	as an example, see Figure A.7.6. Correct protection and ride-through operation should be confirmed during the test. The set points for over and under		

Engineering recommendation G99-1			
Clause	Requirement – Test	Result – Remark	Verdict
	frequency at which the Interface Protection disconnects from the supply will be established by varying the test supply frequency.		
	To establish a trip frequency, the test frequency should be applied in a slow ramp rate of less than 0.1 Hzs-1, or if this is not possible in steps of 0.05 Hz for a duration that is longer than the trip time delay, for example 1 s in the case of a delay setting of 0.5 s. The test frequency at which this trip occurred is to be recorded. Additional tests just above and below the trip frequency should be undertaken to show that the test is repeatable and the figure at which a repeatable trip occurs should be recorded on the type verification test report Annex A.2-1.		
	To establish the trip time, the test frequency should be applied starting from 0.3 Hz below or above the recorded trip frequency and should be changed to 0.3 Hz above or below the recorded trip frequency in a single step. The time taken from the step change to the Power Generating Module tripping is to be recorded on the type verification test report Annex A.2-1. It should be noted that with some loss of mains detection techniques this test may result in a faster trip due to operation of the loss of mains protection and if possible the loss of mains protection should be turned off in order to carry out this test. Otherwise a much smaller step change should be used to initiate the trip and establish a trip time which may require the test to be repeated several times to establish that the time delay is correct.		
	Figure A.7.6. Power Generating Module test set up – over / under frequency		
.7.2.2.4	Loss of Mains Protection	No synchronous Power	N/A
	The resonant test circuit specified as an option for this test has been designed to model the interaction of the Power Generating Module under test with the local load including multiple Power Generating Module 's in parallel.	Generating Module	
	The Power Generating Module output shall be connected to a network combining a resonant circuit with a Q factor of >0.5 and a variable load. The value of the load is to match the Power Generating Module output. To facilitate the test for LoM there shall be a switch placed between the test load/ Power Generating Module combination and the		

	Engineering recommendation G99-1		
Clause	Requirement – Test	Result – Remark	Verdict
	DNO's Distribution Network, as shown in Figure A.7.7.		
	Figure A.7.7 Power Generating Module test set up - loss of mains The Power Generating Module is to be tested at three levels of the Power Generating Module 's Registered Capacity : 10%, 55% and 100% and the results recorded on the test sheet of Annex A.2-1.		
	For each test the load match is to be within \pm 5%. Each test is to be repeated five times.		
	Load match conditions are defined as being when the current from the Power Generating Module meets the requirements of the test load ie there is no export or import of supply frequency current to or from the DNO 's Distribution Network .		
	The tests will record the Power Generating Module 's output voltage and frequency from at least 2 cycles before the switch is opened until the protection system operates and disconnects itself from the DNO 's Distribution Network , or for 5 s whichever is the lower duration.		
	The time from the switch opening until the protection disconnection occurs is to be measured and shall comply with the requirements in Table 10.1.		
	Multi phase Power Generating Modules should be operated at part load while connected to a network running at about 50 Hz and one phase only shall be disconnected with no disturbance to the other phases. The Power Generating Module should trip within 1 s. The test needs to be repeated with each phase disconnected in turn while the other two phases remain in operation and the results recorded in the Type Test declaration.		
A .7.2.2.5	Re-connection	No synchronous Power	N/A
	Further tests will be carried out with the three test circuits above to check the Power Generating Module time- out feature prior to automatic network reconnection. This test will confirm that once the AC supply voltage and frequency have returned to within the stage 1 settings specified in Table 10.1 following an automatic protection trip operation there is a minimum time delay of 20 s before reconnection will be allowed.	Generating Module	
A.7.2.2.6	Frequency drift and vector shift stability test.	No synchronous Power	N/A

Clause	Requirement – Tes	•	Result – Remark	Verdict			
	The tests will be carr as specified in A.7.2 confirmation that the	ried out using the same circuit .2.3 above and following Power Generating Module er and over frequency trip and	Generating Module				
	Four tests are requir protection functions	ed to be carried out with all enabled including loss of mains. It the Power Generating rip during the test.					
	Module should be o output at the start fre should be applied by of a single cycle with the start frequency. be maintained for a	test the Power Generating perated with a measurable equency and then a vector shift r extending or reducing the time a subsequent cycles returning to The start frequency should then period f at least 10 s to complete Generating Module should not					
	Module should be o output at the start fre changed in a ramp fu frequency. On reach be maintained for a	ests the Power Generating perated with a measurable equency and then the frequency unction at 0.95 Hzs-1 to the end ing the end frequency it should period of at least 10 s. The Module should not trip during					
	The results shall be Annex A.2-1.	recorded on the test sheet of					
A.7.2.3	Power Output with	Falling Frequency	No synchronous Power Generating Module	N/A			
A.7.2.3.1	procedure with the D how the Synchrono	propose and agree a test NO, which will demonstrate us Power Generating Module t responds to changes in system	No synchronous Power Generating Module	N/A			
	Power Generating	dertaken by the Synchronous Module powering a suitable load v using the test set up of Figure					
	at nominal frequency	ble test could be to start the test with the Synchronous Power operating at 100% of its y .					
		d then be set to 49.5 Hz for 5 should remain at 100% of y .					
	once the output has	d then be set to 49.0 Hz and stabilised, held at this frequency ctive Power output shall not be tered Capacity .					
	The frequency shoul	d then be set to 48.0 Hz and					

	Engineering recommendation	on G99-1	
Clause	Requirement – Test	Result – Remark	Verdict
	once the output has stabilised, held at this frequency for 5 minutes. The Active Power output shall not be below 97% of Registered Capacity .		
	The frequency should then be set to 47.6 Hz and once the output has stabilised, held at this frequency for 5 minutes. The Active Power output shall not be below 96.2% of Registered Capacity .		
	The frequency should then be set to 47.1 Hz and held at this frequency for 20 s.		
	The Active Power output shall not be below 95.0% of Registered Capacity and the Synchronous Power Generating Module shall not trip in less than the 20s of the test.		
	The Generator shall inform the DNO if any load limiter control is additionally employed.		
A.7.2.4	Synchronous Power Generating Modules which include Electricity Storage	No synchronous Power Generating Module	N/A
	This paragraph provides a method for demonstrating compliance with the optional performance characteristic as discussed in the foreword. The tests shall be carried out to demonstrate how the Synchronous Power Generating Module Active Power when acting as a load (ie replenishing its energy store) responds to changes in system frequency.		
	In general four tests are proposed, one set of two at Rated Import Capacity, and one set of two at 40% of Rated Import Capacity.		
	In both cases the test is to reduce frequency from 50 Hz at 2 Hzs ⁻¹ . In the first case the lower frequency reached will be 49.0 Hz and the second case the lower frequency will be 48.8 Hz.		
	In all cases the response shall meet the requirements of 11.2.3.3.		
A.7.2.5	Limited Frequency Sensitive Mode – Over (LFSM-O)	No synchronous Power Generating Module	N/A
	The tests described in this Annex A.7.2.4 are also suitable for Type A Power Generating Modules > 50 kW.		
A.7.2.5.1	This paragraph is applicable to all Synchronous Power Generating Modules other than slow acting micro hydro Synchronous Power Generating Modules which should refer to paragraph A.7.2.4.2.	No synchronous Power Generating Module	N/A
	Note that this test is also an alternative to the test in A.7.1.3.		
	The two frequency response tests in Limited Frequency Sensitive Mode (LFSM) to demonstrate LFSM-O capability to a frequency injection as shown by Figures A.7.8 and Figures A.7.9 are to be		

Clause	Requirement – Test	Result – Remark	
		nesult – nemark	Verdict
	conducted at Registered Capacity (although a lower power output may be agreed with the DNO if site conditions preclude attaining Registered Capacity , such as an absence of adequate wind).		
	There should be sufficient time allowed between tests for control systems to reach steady state. The injection signal should be maintained until the Active Power (MW) output of the Power Generating Module has stabilised. The DNO may require repeat tests should the tests give unexpected results.		
	The frequency input and the expected Active Power response are illustrated for different periods from 0 s to 130 s in Figure A.7.8 for a step change in frequency and in Figures A.7.9 for a ramp change in frequency. This should be in accordance with Section 11.2.4 (a threshold frequency of 50.4 Hz and a Droop of 10%) and undamped oscillations should not occur after the step or ramp frequency change.		
	Note for diagram purposes only a short interval is shown between the frequency increase and decrease for each test. In practice the return step or ramp can start any time after the output has stabilized after the first step or ramp.		
	The response should commence within 2 s and shall be to the left of the red line (ie between the green line and the red line) and be as close to the green line as possible when following the frequency step or ramp. Note that the red line represents the 0.5% s-1 specified in 11.2.4.1.		
	2 Hzs ⁻¹ Step 0-60 s 8 70 s - 130 s 100 s		
	Figure A.7.8(i): LFSM-O step response test – frequency injection		

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 27 of 101

lause	Requirement – Test	Result – Remark Verdic		
ause	Requirement – TestImage: Sequence of the sequence o	in an	Verdic	
	output is not 100% and the Minimum Stable Operating Level is not 70% then the injected step should be adjusted accordingly as shown in the example given below: Initial output 100%			
	Minimum Stable Operating Level 70%			
	Frequency controller Droop 10%			
	Frequency to be injected = $(1.00 - 0.70) \times 0.1 \times 50$ 1.5Hz) =		
	50.7 50.6 50.5 ≥50.4			

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 28 of 101

	Engineering recommendat			
Clause	Requirement – Test	Result – Remark	Verdict	
	1003k 10000k 10000k 1000k 1000k 1000k 1000k 1000k 1000k 1000k			
	Figure A.7.10(ii): LFSM-O – target response and limits			
	100.5%			
	0.02 Hzs ⁻¹ Ramp			
	Figure A.7.9(iii): LFSM-O ramp response test – expansion (frequency increase)			
	0.02 Hzs ⁻¹ Ramp 955 957 957 957 957 957 957 957			
	Figure A.7.9(iv): LFSM-O ramp response test – expansion (frequency decrease)			
.7.2.5.2	This paragraph is applicable to slow acting micro hydro Synchronous Power Generating Modules .	No synchronous Power Generating Module	N/A	
	Recognising the significant engineering challenge of physically reducing the electrical energy exported from a slow acting micro hydro Power Generating Module , given the mechanical and hydraulic lags involved, the Generator may engineer an appropriate LFSM-O response by automatically switching in load banks to absorb the electrical energy, using frequency sensitive relays or control gear.			
	A single frequency response step test (ie no ramp test) is required in Limited Frequency Sensitive Mode (LFSM) to demonstrate the LFSM-O capability in response to a frequency injection of 2.0 Hzs-1 for 1 s as shown by the Figures A.7.10 below. The test is to be conducted at Registered Capacity (although a lower power output may be agreed with the DNO if site conditions preclude attaining Registered Capacity , such as an absence of			

	Engineering recommendation	on G99-1	
Clause	Requirement – Test	Result – Remark	Verdict
	adequate water flow rate). Similarly if the frequency step takes the operating point below the Minimum Stable Operating Level an alternative appropriate injection should be calculated that demonstrates LFSM-O across the range that is available without breaching the Minimum Stable Operating Level .		
	There should be sufficient time allowed between the step up in frequency for control systems to reach steady state before the following step down in frequency. The injection signal should be maintained until the Active Power (MW) output of the Power Generating Module has stabilised. The DNO may require repeat tests should the tests give unexpected results.		
	The frequency input and the expected Active Power response are illustrated below. This should be in accordance with Section 11.2.4. Undamped oscillations should not occur after the step frequency change.		
	For both the step up and step down parts of the test the response should commence within 2 s and shall always be to the left of the red line and be as close as possible to the green line representing 10% Droop (unless some other Droop is desired by the Generator). It is permissible to be to the left of the 2% Droop line when the first load bank is switched in (or the final one switched out, ie the first one to be switched out) but the output must be to the right of the 2% Droop line by the time the frequency has reached 52.0 Hz (or returned to 50.0 Hz).		
	2Hzs ⁻¹ Step up 10% 9% 9% 10% 10% 10% 10% 10% 10% 10% 10		
	Figure A.7.10(i): LFSM-O step response test (frequency increase) for slow acting micro hydro		

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 30 of 101

	Deguisement Test	Decult Demonstr	Vaulter					
Clause	Requirement – Test	Result – Remark	Verdict					
	105% 100% 95% 96% 96% 85% 86% 75% 65% 75% 65% 75% 65% 76% 65% 76% 76% 76% 76% 76% 76% 76% 76							
A.7.2.6	Figure A.7.10(ii): LFSM-O step response test (frequency decrease) for slow acting micro hydro		NI/A					
-	Power Quality		N/A N/A					
A.7.2.6.1	HarmonicsNo synchronous PowerThe tests should be carried out as specified in BSSenerating ModuleEN 61000-3-12 and can be undertaken with a fixedSource of energy at two power levels firstly between45 and 55% and at 100% of maximum exportCapacity.							
4.7.2.6.2	Power Factor	No synchronous Power Generating Module	N/A					
	The test set up shall be such that the Power Generating Module supplies full load to the DNO 's Distribution Network via the Power Factor (pf) meter and the variac as shown below in Figure A.7.10. The Power Generating Module pf should be within the limits given in paragraph 11.1.5, for three test voltages 230 V –6%, 230 V and 230 V +10%.							
	Power Generating Generating Unit Controller NOTE 1. For reasons of clarity the points of isolation are not shown NOTE 2: It is permissible to use a voltage regulator or tapped transformer to perform this test rather than a variac as shown							
	Figure A.7.10 Power Generating Module test set up – Power Factor							
A.7.2.6.3	Voltage Flicker	No synchronous Power	N/A					
	The voltage fluctuations and flicker emissions from the Generating Unit shall be measured in accordance with BS EN 61000-3-11 and technology specific annex. The required maximum supply impedance should be calculated and recorded in the Type Test designation 0.2.1	Generating Module						
	declaration Annex A.2-1.							
A.7.3	Additional Power Generating Module Technology	Additional Power Generating Module Technology Requirements						

	Engineering recommendation	on G99-1	
Clause	Requirement – Test	Result – Remark	Verdict
	or Domestic CHP Power Park Modules the type verification testing and Interface Protection requirements will be as per the requirements defined in Annex A.7.1.		
	For Domestic CHP Synchronous Power Generating Modules the type verification testing and Interface Protection requirements will be as per the requirements defined in Annex A.7.2.		
A.7.3.2	Photovoltaic	Photovoltaic inverter	Р
	As all current Photovoltaic Power Park Modules will connect to the DNO 's Distribution Network via an Inverter , the type verification testing and Interface Protection requirements will be as per the requirements defined in Annex A.7.1.		
A.7.3.3	Fuel Cells	No fuel cell	N/A
	As all current Fuel Cell Power Generating Modules will connect to the DNO 's Distribution Network via an Inverter , the type verification testing and Interface Protection requirements will be as per the requirements defined in Annex A.7.1.		
A.7.3.4	Hydro	No Hydro	N/A
	Hydro can be connected to the DNO 's Distribution Network directly using induction or Synchronous Power Generating Modules or it can be connected by an Inverter .		
	The common requirements for the generator technologies will apply to micro hydro in addition the following needs to be taken into consideration.		
	Power Generating Modules with manually fixed output or where the output is fixed by controlling the water flow through the turbine to a steady rate, need to comply with the maximum voltage change requirements of BS EN 61000-3-2 but do not need to be tested for P _{st} or P _{lt} .		
	Power Park Modules where the output is controlled by varying the load on the generator using the Inverter and which therefore produces variable output need to comply with the maximum voltage change requirements of BS EN 61000-3-2 and also need to be tested for P_{st} and P_{lt} over a period where the range of flows varies over the design range of the turbine with a period of at least 2 hours at each step with there being 10 steps from min flow to maximum flow. P_{st} and P_{lt} values to recorded and normalised as per the method laid down in Annex A.3.		
A.7.3.5	Wind	No wind	N/A
	Wind turbines can be connected to the DNO 's Distribution Network directly, typically using asynchronous induction generators, or using		

	Engineering recommendation	on G99-1	
Clause	Requirement – Test	Result – Remark	Verdict
	Inverters.		
	For those connected via Inverters , the type verification testing and Interface Protection requirements shall be as specified in Annex A.7.1.		
	For those connected directly to the DNO 's Distribution Network , the type verification testing and Interface Protection requirements shall be as specified in Annex A.7.2.		
	For wind turbines, flicker testing should be carried out during the performance tests specified in BS EN 61400-12. Flicker data should be recorded from wind speeds of 1 ms-1 below cut-in to 1.5 times 85% of the rated power. The wind speed range should be divided into contiguous bins of 1ms-1 centred on multiples of 1 ms-1. The dataset shall be considered complete when each bin includes a minimum of 10 minutes of sampled data.		
	The highest recorded values across the whole range of measurements should be used as inputs to the calculations described in BS EN 61000-3-11 to remove background flicker values. Then the required maximum supply impedance values can be calculated as described in Annex A.2-3. Note that occasional very high values may be due to faults on the associated HV network and may be discounted, though care should be taken to avoid discounting values which appear regularly.		
A.7.3.6	Electricity Storage Device	No storage device	N/A
	Electricity Storage devices can be connected to the DNO's Distribution Network directly or using Inverters.		
	For those connected via Inverter s, the type verification testing and Interface Protection requirements shall be as specified in Annex A.7.1		
	For those connected directly to the DNO 's Distribution Network , the type verification testing and Interface Protection requirements shall be as specified in Annex A.7.2.		
	The tests associated with any requirements which have been identified in Annex A4 as not being applicable to Electricity Storage devices can be considered to be excluded tests in this Annex A7.		

G99-1

Test Results:

A2-3 - Compliance Verification Report for Type A Inverter Connected Power Generating Modules

A.7.1.2 Type Verification Functional Testing of the Interface Protection (Functional safety - fault condition tests according DIN V VDE V 0124-100)								D)	Р
Test result:	HESS-HY-T-1	2K							
	ambient temp	oeratur	e [°C]:		25,0				
	model/type o	f powe	r supply:		DC:62 AC:61		1000S		
	manufacture	r of pov	ver supply	:	Chror	na			
	rated marking	gs of p	ower supp	ly:		1000V 300V,	, 15kW 18kW		
Component No.	Fault	Test of AC	condition DC	Test time	Fuse No.	Fault AC	condition DC	Result	
PCE input	Reversed		DC 650	10 min.				DC Input: 650Vd AC Output: 230V FID: Cannot star MT: N/A SD: ⊠Yes / □N GD: ⊠Yes / □N RO: ⊠Yes / □N NCD: ⊠Yes / □N NH: ⊠Pass/ □F DST: ⊠Pass/ □	/ac / 0A / 0W t o o No ail.
PCE input	S-C		DC 650	10 min.				DC Input: 650Vd AC Output: 230V FID: PEC stop, F PV1 string curren MT: N/A SD: ⊠Yes / □N GD: ⊠Yes / □N RO: ⊠Yes / □N NCD: ⊠Yes / □N NH: ⊠Pass/ □F DST: ⊠Pass/ □	c / 0A / 0W /ac / 0A / 0W fault code 59. Int abnormal. D O O No ail.
PCE input	Over- voltage		DC 1100	10 min.				DC Input: 1100V AC Output: 230V FID: PEC stop, F PV over voltage MT: N/A SD: I Yes / INA GD: I Yes / INA RO: I Yes / INA NCD: I Yes / INA NH: I Pass/ IF DST: I Pass/ I	Yac / 0A / 0W Fault code 37. 0 0 0 No ail.

PCE	Different	 DC 850/	10	 	 DC1 Input: 850Vdc / 7,5A /
input (only for multistring)	input MPP1: low input MPP2: high input	420	min.		6050W DC2 Input: 420Vdc / 15,5A / 6050W AC Output: 230Vac / 52A / 12kW FID: normal working. MT: N/A SD: ⊠Yes / □No GD: ⊠Yes / □No RO: ⊠Yes / □No NCD: ⊠Yes / □No NCD: ⊠Yes / □No NCD: ⊠Yes / □No
					DST: ⊠Pass/ □Fail.
PCE output	Power over-feed (OCP & OTP function controlled by DSP / software is disable)	 DC 650	10 min.	 	 DC Input: 650Vdc / 0A / 0W AC Output: 230Vac / 0A / 0W FID: PEC stop, Fault code 46. High DC bus. MT: N/A SD: ⊠Yes / □No GD: ⊠Yes / □No RO: ⊠Yes / □No NCD: ⊠Yes / □No NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
PCE output	Over- voltage (OVP function controlled by DSP / software is disable)	 DC 650	10 min.	 	 DC Input: 650Vdc / 0A / 0W AC Output: 230Vac / 0A / 0W FID: PEC stop, Fault code 46. DC bus is to high. MT: N/A SD: ⊠Yes / □No GD: ⊠Yes / □No RO: ⊠Yes / □No NCD: ⊠Yes / □No NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
PCE output	S-C	 DC 650	10 min.	 	 DC Input: 650Vdc / 0A / 0W AC Output: 230Vac / 0A / 0W FID: PEC stop, overcurrent protect. MT: N/A SD: IXYes / INo GD: IXYes / INo RO: IXYes / INo NCD: IXYes / INo NCD: IXYes / INo NH: IXPass/ IFail. DST: IXPass/ IFail.
PCE output	Phase sequence or polarity incorrect	 DC 650	10 min.	 	 DC Input: 650Vdc / 0A / 0W AC Output: 230Vac / 0A / 0W FID: PEC cannot work, fault AC voltage fault MT: N/A SD: I Yes / INo GD: I Yes / INo RO: I Yes / INo NCD: I Yes / INo NH: I Pass/ I Fail. DST: I Pass/ I Fail.

PCE output	A-Phase miswiring grid connection		DC 650	10 min.	 		DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PEC cannot work, fault AC voltage fault. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
PCE cooling system failure	Fan locked (MF1) CN04		DC 650	10 min.	 		DC Input: 650Vdc / 18,5A / 12100W. AC Output: 230Vac / 52,1A / 12kW. FID: Normal work. MT: Ambient=60°C, IGBT=75,3°C, Transformer=82°C, Inductance=86,8°C SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □Fail.
PCE cooling system failure	Opening blocked CN101		DC 650	10 min.	 		DC Input: 650Vdc / 18,5A / 12100W. AC Output: 230Vac / 52,1A / 12kW. FID: Normal work. MT: Ambient=60°C, Enclosure=75,3°C. SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
	processer fail	ure					
DSP failure	+1.2V power supply disable C708 s-c		DC 650	10 min.	 	-	DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: DSP reset. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.

DCD	.0.01/	1		10		
DSP failure	+3.3V power supply disable C719 s-c		DC 650	10 min.	 	 DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: DSP reset. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
	e reset 20-30%l					
	trol & Function	fault				
IGBT PMW	Loss / failure (no power) C299 s-c		DC 650	10 min.	 	 DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE stop. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
IGBT PMW	Loss / failure (no power) U124 pin 6 to Q121 G s-c		DC 650	10 min.	 	 DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE stop. IGBT Q121, Q111 broke. MT: N/A SD: ⊠Yes / □No. GD: □Yes / ⊠No. RO: ⊠Yes / □No. NCD: □Yes / ⊠No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
IGBT PMW	Loss / failure (no driver) U124 pin 6 to Q121 G s-c		DC 650	10 min.	 -	 DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE stop. Fault code 6. DC bus is to high. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
PV/DC voltage detector	Loss / failure R440 s-c		DC 650	10 min.	 	 DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE stop. Fault code 8. AC HCT failure MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.

	L -	I		 	
PV/DC voltage detector	Loss / failure R112 o-c	 DC 650	10 min.	 	 DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE stop. Fault code 37. PV over voltage. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
PV/DC current detector	Loss / failure U101 pin 11-12 s-c	 DC 650	10 min.	 	 DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE cannot stop. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
BUS voltage detector	Loss / failure R186 o-c	 DC 650	10 min.		 DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE stop. Fault code 6. DC bus is to high. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
Inverter voltage detector	Loss / failure C589 s-c	 DC 650	10 min.	 	 DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE stop. Fault code 34. AC voltage out of range. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
Inverter voltage detector	Loss / failure R451 o-c	 DC 650	10 min.	 	 DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE stop. Fault code 34. AC voltage out of range. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.

Grid/AC voltage detector	Loss / failure C643 s-c	 DC 650	10 min.	 	 DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE stop. Fault code 34. AC voltage out of range. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
Grid/AC voltage detector	Loss / failure R717 o-c	 DC 650	10 min.	 	 DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE stop. Fault code 34. AC voltage out of range. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
DC isolation device function check	Loss / failure C584 s-c	 DC 650	10 min.	 	 DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE stop. Fault code 53. ISO check: before enable constant current, ISO voltage > 300mV. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
DC isolation device function check	Loss / failure R429 o-c	 DC 650	10 min.	 	 DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE stop. Fault code 53. ISO check: before enable constant current, ISO voltage > 300mV. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.

DC isolation	Loss /	 DC 650	10	 	 DC Input: 650Vdc / 0A / 0W.
device function check	failure R429 o-c		min.		AC Output: 230Vac / 0A / 0W. FID: PCE stop. Fault code 53. ISO check: before enable constant current, ISO voltage > 300mV. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
Relay / Contact or function check (K1 s-c)	Loss / failure RY501 s-c	 DC 650	10 min.	 	 DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE stop. Fault code 3. Relay check fail. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
Relay / Contact or function check (K1 o-c)	Loss / failure RY502 o-c	 DC 650	10 min.	 	 DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE stop. Fault code 10. Device fault. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
Relay / Contact or function check (K2 s-c)	Loss / failure RY504 s-c	 DC 650	10 min.	 -	 DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE stop. Fault code 3. Relay check fail. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
Relay / Contact or function check (K2 o-c)	Loss / failure RY508 o-c	 DC 650	10 min.	 	 DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE stop. Fault code 10. Device fault. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.

	· · ·	DO 05			[
Relay / Contact or function check (K3 s-c)	Loss / failure RY507 s-c	 DC 650	10 min.	 		DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE stop. Fault code 3. Relay check fail. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
Relay / Contact or function check (K3 o-c)	Loss / failure RY510 o-c	 DC 650	10 min.	 -		DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE stop. Fault code 10. Device fault. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
Relay / Contact or function check (K4 s-c)	Loss / failure RY513 s-c	 DC 650	10 min.	 1	-	DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE stop. Fault code 3. Relay check fail. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
Relay / Contact or function check (K4 o-c)	Loss / failure RY515 o-c	 DC 650	10 min.	 		DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE stop. Fault code 10. Device fault. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
RCD/RCM function check	Loss / failure CT106 pin 1-5 s-c	 DC 650	10 min.	 		DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE stop. Fault code 36. GFCI failure. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.

	1 /	DO 050	10	1	 1	
RCD/RCM function check	Loss / failure R450 o-c	 DC 650	10 min.		 	DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE stop. Fault code 36. GFCI failure. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
Ambient temperature detector	Loss / failure NTC 102 s- c	 DC 650	10 min.		 	DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE stop. Fault code 174. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
Ambient temperature detector	Loss / failure NTC 102 o-c	 DC 650	10 min.		 	DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE stop. Fault code 174. Low air temperature. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
Heat-sink temperature detector	Loss / failure NTC 102 s- c	 DC 650	10 min.		 	DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE stop. Fault code 40. Over temperature in inverter. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
Heat-sink temperature detector	Loss / failure NTC 102 o-c	 DC 650	10 min.		 	DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE stop. Fault code 40. Over temperature in inverter. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.

	-							
DC input BUS capacitor (390 µF)	C208 s-c		DC 650	10 min.				DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: IGBT Q121, Q122, Q123, C208, C209, C210 broke, machine protection, no open fire, basic insulation after failure. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: □Yes / ⊠No. NCD: □Yes / ⊠No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
IGBT (IGBT DS)	Q111 s-c		DC 650	10 min.				DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: PCE stop. IGBT Q111, Q121 broke, machine protection, no open fire, basic insulation after failure. MT: N/A SD: ⊠Yes / □No. GD: □Yes / ⊠No. RO: □Yes / ⊠No. NCD: □Yes / ⊠No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
PSDR board DC SPS unit				10				DC Input: 650V/do / 0A / 0W/
+7V	Output s-c C433 s-c		DC 650	10 min.				DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: No fault code, PCE stop. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. RO: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
Power supply transformer	C435 s-c +12V s-c		DC 650	10 min.				DC Input: 650Vdc / 0A / 0W. AC Output: 230Vac / 0A / 0W. FID: No fault code, PCE stop. MT: N/A SD: ⊠Yes / □No. GD: ⊠Yes / □No. NCD: ⊠Yes / □No. NH: ⊠Pass/ □Fail. DST: ⊠Pass/ □Fail.
FID	Fault Indicati	on			МТ		May 7	Comporatura
SD	PCE Shut De				MT GD			Temperature
RO	Recovered to removing the	o Oper		ng	NCD			mp. or parts damaged
NH	No hazards			-	DST		Dielec	tric strength test
S-C	short-circuite				0-C			circuited
o-l	Over-load.							
The errors in t		cuit sir	nulate that	t the saf	etv is ev	en unde	er one erro	r ensured.
Addendum –					,			
Audendum –	Shutdowild	evice						

Each active phase can be switched. (L and N) If no galvanic separation between AC and DC (PV): Two relays in series on each active phase are necessary to fulfil the basic	Relay with min. 2,3 mm gab used. Two relays in series on each
insulation or simple separation based on the PV working voltage.	active phase
Nete	

Note:

perating Range					Р
est result: HESS-H	Y-T-12K				1
	(Over-	voltage [V]:	253,0	
Cotting web		Under	-voltage [V]:	195,5	
Setting val	ues	Over-	frequency [Hz]:	52,00	
	I	Under	-frequency [Hz]:	47,50	
- Test 1: U = 19	95,5 V; f = 47,0 H	lz; P =	= 1,00 Sn; cosφ = 1; a	t least 20 s	
- Test 2: U = 19	95,5 V; f = 47,5 ⊢	lz; P =	= 1,00 Sn; cosφ = 1; a	t least 90 mins	
- Test 3: U = 25	53,0 V; f = 51,5 H	lz; P =	= 1,00 Sn; cosφ = 1; a	t least 90 mins	
- Test 4: U = 25	53,0 V; f = 52,0 ⊢	lz; P =	= 1,00 Sn; cosφ = 1; a	t least 15 mins	
	· · · ·		= 1,00 Sn; cosφ = 1; a		
			Hz;RoCoF=1Hz/s; P	· · ·	
Test sequence	Voltage [V]		Frequency [Hz]	Output power [kW]	Cos φ [1]
Test 1	195,5		47,00	11,38	1,000
Test 2	195,5		47,50	11,38	1,000
Test 3	252,9		51,50	11,93	0,999
Test 4	252,9		52,00	11,91	0,999
Test 5	229,9		50,00	11,99	1,000
Test 6	229,9		50,00	11,98	1,000

During the tests the interface protection was disabled.

Operation at reduced power is allowed during test 1 and test 2, equal to the maximum power that can be supplied on reaching the maximum output current limit ($P \ge 0.85$ Sn).

During the sequence of test 3 and test 4, automatic adjustment to reduce power in the case of over-frequency was disabled.

	ver / Under Vo ould be carried o	Itage out in accordance	e with Annex A	.7.1.2.2.		Ρ
est result: HE	SS-HY-T-12K					
			Phase 1			
Function	Set	ting	Tri	p test	No tr	ip test
	Voltage Time del		Voltage	Time delay	Voltage / time	Confirm r trip
U/V	184,0V (0,8 pu)	2,5s	184,7V	2,554s	188V / 5,0s	No trip
					180V / 2,45s	No trip
D/V stage 1	262,2V (1,14 pu)	1,0s	262,8V	1,020s	258,2V / 5,0s	No trip
D/V stage 2	273,7V (1,19 pu)	0,5s	273,4V	0,520s	269,7V / 0,95s	No trip
					277,7V / 0,45s	No trip
			Phase 2		0,100	
Function	Set	ting	Tri	p test	No tr	ip test
	Voltage	Time delay	Voltage	Time delay	Voltage / time	Confirm r trip
U/V	184,0V (0,8 pu)	2,5s	184,3V	2,560s	188V / 5,0s	No trip
					180V / 2,45s	No trip
D/V stage 1	262,2V (1,14 pu)	1,0s	262,2V	1,001s	258,2V / 5,0s	No trip
D/V stage 2	273,7V (1,19 pu)	0,5s	273,3V	0,508s	269,7V / 0,95s	No trip
	· · ·				277,7V / 0,45s	No trip
			Phase 3		.,	
Function	Set	ting	Tri	p test	No tr	ip test
	Voltage	Time delay	Voltage	Time delay	Voltage / time	Confirm r trip
U/V	184,0V (0,8 pu)	2,5s	184,3V	2,573s	188V / 5,0s	No trip
					180V / 2,45s	No trip
D/V stage 1	262,2V (1,14 pu)	1,0s	263,4V	1,022s	258,2V / 5,0s	No trip
D/V stage 2	273,7V (1,19 pu)	0,5s	274,4V	0,511s	269,7V / 0,95s	No trip
	, , , , , , , , , , , , , , , , , , ,			•	277,7V / 0,45s	No trip

Note:

The total disconnection time for voltage and frequency protection, including the operating time of the disconnection device, shall be the time delay setting with a tolerance of, -0s + 0.1 s.

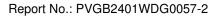
The Voltage required to trip is the setting $\pm 3,45$ V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

		Under volt	age(Phase 1)		
0.39340	0.0240	01.50 0	00.29.50.0	01.79.12.0	02.3934.0
● A1 [A] ● A1 [A] ● A2 [A]	A 01:39:28.05667 23.09740 -18.15379	7 (B 11:99:30.610252 -1.417995 1.784563	2.553575 -24.51539 19.93835	有效值 18.58324 18.39280
© A3 (A) © U1 (V) © U2 (V) © U3 (V)	4.827977 309.2566 -240.6600 -68.36992		0.030994 -33.71573 290.5422 -248.6386	4,858971 -342,9723 533,4022 -180,2697	18.75779 182.9304 229.9839 229.7506
0 AI 3/U1 [V]	-4.034996	Over volta	ge (Phase 1)	-1.046896	5.072676
				NWWA	
				www	
				MMM	
			╡╡┽╅╛┍┍╘╺┶┍┶┿┿┿┝┝╿╏┾┿┽ ┈┙┙╍╍╷╷╷╷╴╴		
			**************************************		*****
	***************************************	***************************************	ATTURE CONTRACTOR C	***************	******
	*****	*****	****		
01.51.58.00	01.51:10.50	01.51.19.0	0	01.52 23 50	01.51.20.00
時间(s) ●A1 [A]	A 01:51:18.59584 -15:71834	o)	B 01:51:19:616141 -16:62195	阿福 1.020281 -0.003606	有效值 16.67061

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 48 of 101

9	21		Over	r vol	tage stage 2	(Phase	1)		100 M 100 M
005. 000	MMM			MM	MMM WW	www-	~		
VI.DVA				ŴŴ		MMM.			
20.00-00.00		ΛΑΛΛΑΛΑΛΑΛΑΛΑΑ	ΛΛΛΑΛΑΛΑΛΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ	ιλλλ		11111111111111111111111111111111111111	~		
200.0520.00	V V V V V V V A A A A A A A	/ V V V V V V V V V V V V V V V V V V V		A A A A	*****	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.		A A A A A A A A A A A A A	
Al Ine	<u></u>			/////		V-V-V-V-V-V-V-V-			
INI 20 0/000	9 - A - A - A - A - A - A - A - A - A - A			M					
0 200 S				WW					
200-00-00 INI INIE									
00.025		01.58.11.75 01.58	14.00 A 8:14.25		00.58:14:50 B	015	75 01.58.1 同篇	5.00 01.58.15 Ağı	
	₩ 83 (5) ● A1 (A) ● A2 (A)		01:58:14.234142 -24.84322 9.610329		01:58:14.754080 0.150800 +1.210570		0.519938 24.99402 -11.02090	16.306 15.996	79
	© A3 [A] © U1 [V] © U2 [V]		15.02931 -322.4070 130.1155		1.040697 -382.8821 115.2623		-13.98861 -60.47511 -14.85324	16.208 274.09 229.72	96 91
	0 03 (V) 0 Al 3/01 (V)		192.7500 -5.059004		205.0991 -5.065203		12.34913 -6.199e-3	229.76 5.0652	51
			U	Inde	r voltage(Ph	ase 2)			
50.00						,			
3									» 🔨
A 80.00-50.00									
No 50 00 100 00 00 00 00 00 00 00 00 00 00 0									
A DECESSION OF A DECE									
or no-our to a construction of the second se									» ~ S
or on one of the sector of the									
or an open of the second of th									
or the version of the									
no indexensión de concerce de la concerc									» N
10.017						2142	间隔		5.245 L
10.017	■ 时间(s) ●A1 (A)		A 01:42:39.747015 -11:96206		4.0 4.0 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2		同隔 2.559045 -6.342531	有效() 17.330	
10.017	1 時间 [s] ●A1 [A] ●A2 [A] ●A3 [A]		A 014239.747015 -11.96206 24.07313 -12.21180		C. 2000 C.		间稿 2.559045 -6.342531 -0.774860 7.136465	有效的 17.3800 17.2710 17.4959	
10.017	■ 封詞(s) ● A1 (A) ● A2 (A)		A 01:42:39.747015 -11.96206 24.07313				间隔 2.559045 -6.342531 -0.774860	有效() 17.330 17.271(

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 49 of 101


8	01	ver voltage (Phase 2)		
			~~~~~~	······································
	AMAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMAMAM	A A A A A A A A A A A A A A A A A A A		<u>.</u>
	AVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		ANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ananananananananan
	*****	****************	*******	
01.53-47.00	01:50-47:50	01.53-45.00	8	01.53 44.50 【 有效值
1월 51월 [2] 81월 [2] 842 [A]	A 01:53:47.395618 -22.10677 0.015477	01:53:48.396825 0.152588 -1.349449	1.001207 22.25936 -1.367927	17.03802 17.24142
0 A3 (A) 0 U1 (V) 0 U2 (V) 0 U2 (V)	22.02511 -285.9226 15.01393 275.1808 -5.062342	1.049638 -324.1420 149.4603 194.032 -506439	-20.97547 -35.21943 134.4664 -81.14863	17.37076 223.8764 263.5485 228.7644 5.666539
@ A 3/U1 [V]		voltage stage 2(Phas	-1307e3	3.000337
			W	». N. 5
			M	
			AM	
• • • • • • • • • • • • • • • • • • •			<u></u>	<u>, , , , , , , , , , , , , , , , , , , </u>
				n varava varavavava varavavavavavava
	**************************************	· · · · · · · · · · · · · · · · · · ·	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	0 00 00 00 00 00 00 00 00 00 00 00 00 0	B 02:00:30.049807	2000 0 02:00:25 可能 0.507750	0000000 6000000 4200
	λ	6	30:00 0 02:00:30:25	

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 50 of 101



0		Un	der voltage(Pha	se 3)	1
	ແລງງາວການສາງແລງງແລງງແລງງແລງ ທີ່ມີແລງມີແລງໃນເອງໃນເອງໃນເອງໃນເອງ	n an the state of the	ani ang mang mang mang mang mang mang mang		» ~ 2
		annovanternutionnuterannova	Miccollinesultaeaultaeaultaeau	uressuitessuitessui	
8	ตะอภิษาราชโตรงมีโตรงมีใตรงมีใตรงมีไดรง ของการราชการเราการราชการราชการราชการราชการราชการราชการราชการราชการราชการ ของการราชการราชการราชการราชการราชการราชการราชการราชการราชการราชการราชการราชการราชการราชการราชการราชการราชการราช				
	มีใหญ่มีเหตุมีแต่งมีเหตุมไหตุมไม่เหตุมไ	willicon the all the all the all the	ที่ใหญ่มีของไม่องไม่ของไม่องไม่ของ		
E INCOMENTAL	umpuonpuonpuonpuonpuon ulteen kiennisteen koonisteen kiennist	والمحيور والمتكاف والمراجع والمراجع والمحتج والمحتج المحتج والمحتج والم	a a bhf a' parais a' fairtean a' fhairtean a bhairte a sann a' fairtean an sann a' bhairtean a	a find a second second second second second second second second	na se
- ALL ALL ALL ALL ALL ALL ALL ALL ALL AL		and the set of the set of the set of the set		(in the second	an na an a
N ST		Hittillhoranomonanova			
	ikineni areatiinen kinen kinen in oo biin oo ki	NIN Merena and a subsection of the section of the s			
8 8 0.4931.00	02-4534,00	6 15 15 00		1.45 37.00 1 02.45 38.00	0.4538.00
时间(s) ●A1(A) ●A2(A)		A 01:45:34.936757 0.967383 -21.45409	B 01:45:37.509438 -1.040697 1.225472	FIE 2.572680 -2.008881 -22.68016	有效值 19.19708 19.1927
© A3 (A) © U1 (V) © U2 (V)		20.45393 28.50723 -295.0764	-0.239611 220.5522 95.73866	-20.69354 192.0450 390.8150	19.51172 229.7782 229.8587
● U3 [V] ● AI 3/U1 [V]		266.1209 -5.060196	-251,9691 -5.064965	-518,0900 -4,768+3	183.2813 5.067132
ANATANAN	*****	*****	ver voltage (Phas		». N. S.
				AAAAAAAAAAAAAA	
N N N					
E	*****				
	***************************************	***************************************	***************************************	***************************************	┎╡┲╡┲┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙┙
			ling of the production of the state of the s		
o zalo					
801	01.5614.00 01.1	٨	96.15.00 01.96.15.50 B	间隔	ct.56.16.50 【 有效值
R.		01:56:14.837293	01:56:15.859711	1.022419	
時間 (s) 日前間 (s) のA1 (A) のA2 (A)		-21.45350 20.81812 0.593066	-1.303554 0.243783 1.041293	20.14995 -20.57433 0.448227	15.69221 15.51939 36.18179

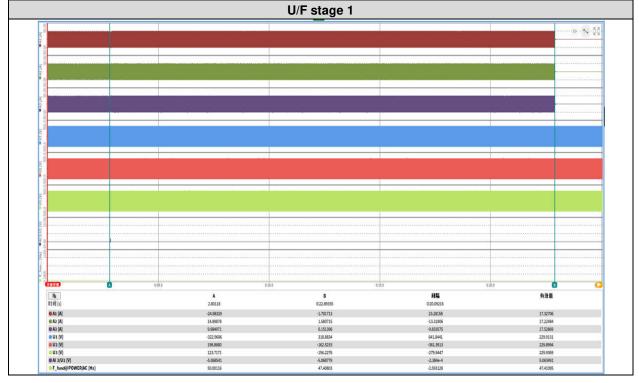
No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 51 of 101





					Over vo	oltage	stage 2	2(Pha	ise 3	)				
	WW	WW	WWW	VVV		$\mathcal{M}$	WW	Ŵ	$\mathcal{M}$		Λ			»
		MM		MM			WW	WV	WW		.\			
			MMM		VVVV		MM	AAA	$\mathcal{M}$	MW	V			
	VVV					M	$\mathbb{N}$	$\mathbb{N}$					MM	
	M			$\mathcal{M}$	$\mathbb{A}$	$\mathbb{A}$	$\mathbb{N}$	ŴŴ	$\mathbb{V}$		MM			MM
	AAA		AAAAA	M	V////			AAA	$\mathcal{M}$	$\mathcal{M}$	( <mark>AA)</mark>			
間間的	02:02-	1.50		A 12:02:41.682664	141.75		B 02:02:42.193819	02:02:42:00		<b>肖篇</b> 0.51115	az 62	42.25	有效值	62.62
<ul> <li>A1 [A]</li> <li>A2 [A]</li> </ul>			20	23.39900 +17.01474			-3.446937 4.835725			-26.845	3		15.01233 14.89303	
@ A3 [A]				-6.430746			-1.567006			4.86373	)		15.52142	
0 U1 [V] 0 U2 [V]				315.0296 -228.6132			-275.9018 315.5470			-590.93 544.160	2		229.7905 229.8383	
U3 [V]				-85.89221 -5.064011			-44.96646 -5.062819			40.9257 1.192e			274.2641 5.063487	




These tests sho	These tests should be carried out in accordance with Annex A.7.1.2.3. Test result: HESS-HY-T-12K										
Function	Set	ting	Trip	test	No tr	ip test					
	Frequency	Time delay	Frequency	Time delay	Frequency / time	Confirm no trip					
U/F stage 1	47,5Hz	20,0s	47,50Hz	20,092s	47,7Hz / 30s	No trip					
U/F stage 2	47,0Hz	0,5s	47,00Hz	0,556s	47,2Hz / 19,5s	No trip					
					46,8 Hz / 0,45s	No trip					
O/F	52,0Hz	0,5s	52,00Hz	51.8Hz		No trip					
	52,2 Hz / 0,45s	No trip									

# Note:

The total disconnection time for voltage and frequency protection, including the operating time of the disconnection device, shall be the time delay setting with a tolerance of, -0s + 0.1 s.

For frequency trip tests the frequency required to trip is the setting  $\pm 0,1$  Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting  $\pm 0,2$  Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

The tests had been performed on the HESS-HY-T-12K are valid for the HESS-HY-T1-12K since it is almost same as in hardware and software.



No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 53 of 101



97			U/F stage 2		
		MMMM		·/////////////////////////////////////	
				www	
				NANAAAAA	
5) 時间(s) ●A1(A)	32 30	6 32.75 A 5:32.818223 10.18941	5 22 00 B 5:33.374465 1.029968	533.25 <b>FR</b> 0.555242 -0.159446	51150 L 有效值 17,28400
6 A2 (A) 6 A3 (A) 6 U1 (V) 9 U2 (V)		-24.63699 14.32300 134.3470 -323.6091	-1.408458 0.333190 -153,7438 -170,0769	23.22853 -13.96981 -288.0907 153.5323	17.23180 17.51224 229.3202 230.1067
• U3 [V] • Al 3/U1 [V]		189,6153 -5,065441	325.6562 -5.064249 <b>O/F</b>	136.0409 1.192e-3	230.1600 5.067833
					∧» ∻ 88
					V-+-
					Jocutur
	/	YY¥YY¥¥	V.··/···#··/··/··/··/··//··//··//··//··//		/-\/
7.1175	7.34.00	۵	7.94.25 B	73450 All	<ul> <li>2343 C</li> <li>有效值</li> </ul>
		7:34.022892	7:34.572866	0.549974	
时间(s) ●A1 (A) ●A2 (A) ●A3 (A)		-3.119707 22.33207	1.155138 -1.173019	4.274845 -23.50509	17.31028 17.19492

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 54 of 101



These	A.7.1.2.4 Loss of mains protection according BS EN 62116 These tests should be carried out in accordance with BS EN 62116. Annex A.7.1.2.4. Load imbalance (real, reactive load) for test condition A (EUT ouput = 100%)										Ρ
Т	Test result: HESS-HY-T-12K         Frequency: 50+/-0,1Hz         UN=230+/-3Vac         Distortion factor of chokes < 2%         Quality =1         Disconnection limit       0.5 s										
No	P _{EUT} ¹⁾ (% of EUT rating)	Reactiv (% of 6.1.c	Q∟ in	P _{AC} ²⁾ (% of nominal)	Q _{AC} ³⁾ (% of nominal)	I _{AC} ⁴⁾ [A]	0,5 s P _{EUT} [kW per phase]	V _{DC} [V]	Q _f [1]	Run on Time [ms]	Remarks ⁵⁾
1	100	10		0	0	0,137	4,0	620,0	1,002		BL
4	100	10	0	-5	-5		4,0	620,0	1,026	253,5	IB
5	100	10	0	-5	0		4,0	620,0	1,053	254,0	IB
6	100	10	0	-5	+5		4,0	620,0	1,079	258,0	IB
7	100	10	0	0	-5		4,0	620,0	0,975	180,5	IB
8	100	10	0	0	+5		4,0	620,0	1,025	181,0	IB
9	100	10	0	+5	-5		4,0	620,0	0,928	317,5	IB
10	100	10	0	+5	0		4,0	620,0	0,952	251,5	IB
11	100	10	0	+5	+5		4,0	620,0	0,976	382,5	IB
										0.01	
Pa	rameter at 0%	% per ph	ase	L= 4	12,12mH		K= 13	3,23Ω		C= 24	0,81µF
	Indicate additional shut down time included in above results. (Disconnection device operation time)20 ms									ms	

Note:

Note for technologies which have a substantial shut down time this can be added to the 0,5 seconds in establishing that the trip occurred in less than 0,5s. Maximum shut down time could therefore be up to 1,0 seconds for these technologies.

RLC is adjusted to min. +/-1% of the inverter rated output power

¹⁾ P_{EUT}: EUT output power

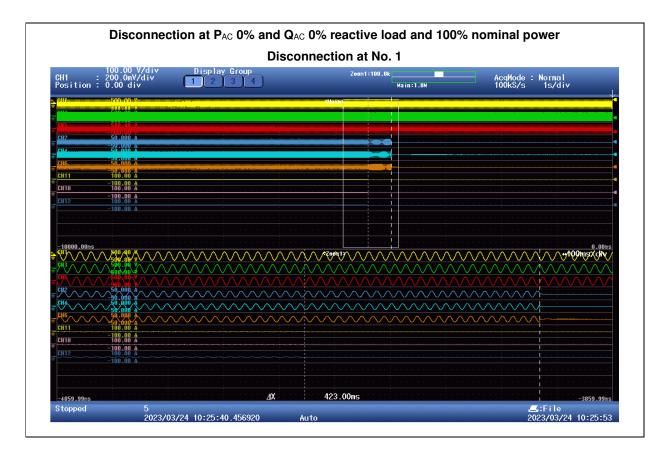
²⁾ P_{AC}: Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

 $^{3)}$  Q_{AC}: Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value.

⁴⁾ Fundamental of I_{AC} when RLC is adjusted.

⁵⁾ BL: Balance condition, IB: Imbalance condition.

Condition A:


EUT output power PEUT = Maximum ⁵⁾

EUT input voltage  $^{6)} = >75\%$  of rated input voltage range

⁶⁾ Maximum EUT output power condition should be achieved using the maximum allowable input power. Actual output power may exceed nominal rated output.

⁷⁾ Based on EUT rated input operating range. For example, If range is between X volts and Y volts, 75% of range =X + 0,75 × (Y – X). Y shall not exceed 0,8 × EUT maximum system voltage (i.e., maximum allowable array open circuit voltage). In any case, the EUT should not be operated outside of its allowable input voltage range.







# A.7.1.2.4 Loss of mains protection according BS EN 62116

These tests should be carried out in accordance with BS EN 62116. Annex A.7.1.2.4. Load imbalance (real, reactive load) for test condition A (EUT output = 50 % - 66 %)

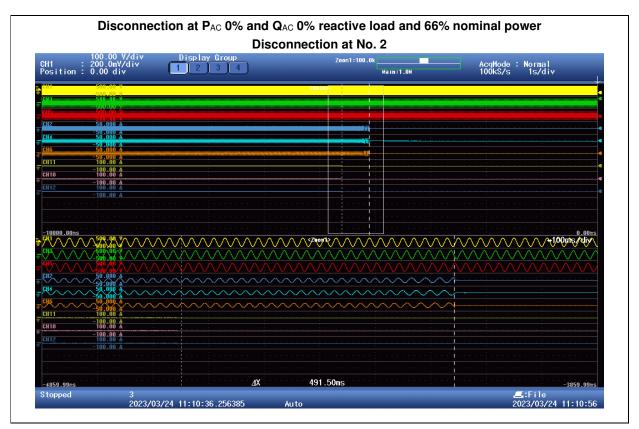
Ρ

Test result: HESS-HY-T-12K													
Test r	esult: HESS	-HY-T-1	2K			_							
7	Fest condition	าร		Frequency: 50+/-0,1Hz U _N =230+/-3Vac Distortion factor of chokes < 2% Quality =1									
Dis	sconnection	imit					0,5 s						
No	P _{EUT} ¹⁾ (% of EUT rating)	Reactiv (% of 6.1.0	Q∟ in	P _{AC} ²⁾ (% of nominal)	Q _{AC} ³⁾ (% of nominal)	I _{AC} ⁴⁾ [A]	P _{EUT} [kW per phase]	V _{DC} [V]	Q _f [1]	Run on Time [ms]	Remarks ⁵⁾		
12	66	66		0	-5		2,64	480,0	0,975	218,5	IB		
13	66	66		0	-4		2,64	480,0	0,980	221,0	IB		
14	66	66 66		0	-3		2,64	480,0	0,985	225,5	IB		
15	66	6	6	0	-2		2,64	480,0	0,990	256,5	IB		
16	66	6	6	0	-1		2,64	480,0	0,995	312,5	IB		
2	66	6	6	0	0	0,103	2,64	480,0	1,000	491,5	BL		
17	66	6	6	0	1		2,64	480,0	1,005	325,0	IB		
18	66	6	6	0	2		2,64	480,0	1,010	263,0	IB		
19	66	6	6	0	3		2,64	480,0	1,015	247,0	IB		
20	66	6	6	0	4		2,64	480,0	1,020	222,0	IB		
21	66	6	6	0	5		2,64	480,0	1,025	194,5	IB		
Pa	rameter at 0%	% per ph	ase	L= 6	3,81mH		R= 2	0,04Ω		C= 15	8,93µF		
	te additional				above res	ults.				20	ms		
(Disconnection device operation time)       20 ms         Note:       RLC is adjusted to min. +/-1% of the inverter rated output power ¹⁾ P _{EUT} : EUT output power       2) P _{AC} : Real power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 % test condition value. ³⁾ Q _{AC} : Reactive power flow at S1 in Figure 1. Positive means power from EUT to utility. Nominal is the 0 %													

test condition value.

⁴⁾ Fundamental of I_{AC} when RLC is adjusted.

⁵⁾ BL: Balance condition, IB: Imbalance condition.


Condition B:

EUT output power PEUT = 50 % - 66 % of maximum

EUT input voltage ⁵⁾ = 50 % of rated input voltage range, ±10 %

⁶⁾ Based on EUT rated input operating range. For example, If range is between X volts and Y volts, 50 % of range =X + 0,5 × (Y – X). Y shall not exceed 0,8 × EUT maximum system voltage (i.e., maximum allowable array open circuit voltage). In any case, the EUT should not be operated outside of its allowable input voltage range.





No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 58 of 101



# A.7.1.2.4 Loss of mains protection according BS EN 62116

These tests should be carried out in accordance with BS EN 62116. Annex A.7.1.2.4. Load imbalance (real, reactive load) for test condition A (EUT output = 25 % - 33 %)

Test r	esult: HESS	-HY-T-12K								
٦	Fest condition	าร		Dis	UN UN:tortion f	ency: 50+/-( =230+/-3Va actor of cho Quality =1	ac	%		
Dis	sconnection I	limit				0,5 s				
No	P _{EUT} ¹⁾ (% of EUT rating)	Reactive load (% of Q _L in 6.1.d) 1)	P _{AC} ²⁾ (% of nominal)	Q _{AC} ³⁾ (% of nominal)	I _{AC} ⁴⁾ [A]	P _{EUT} [kW per phase]	V _{DC} [V]	Q _f [1]	Run on Time [ms]	Remarks ⁵⁾
22	33	33	0	-5		1,32	312,0	0,975	205,5	IB
23	33	33	0	-4		1,32	312,0	0,980	206,0	IB
24	33	33	0	-3		1,32	312,0	0,985	216,0	IB
25	33	33	0	-2		1,32	312,0	0,990	236,5	IB
26	33	33	0	-1		1,32	312,0	0,995	244,5	IB
3	33	33	0	0	0,051	1,32	312,0	1,000	428,0	BL
27	33	33	0	1		1,32	312,0	1,005	422,5	IB
28	33	33	0	2		1,32	312,0	1,010	237,0	IB
29	33	33	0	3		1,32	312,0	1,015	235,5	IB
30	33	33	0	4		1,32	312,0	1,020	214,5	IB
31	33	33	0	5		1,32	312,0	1,025	202,5	IB
Dev	remeter at 09	/ por phoso		07.00ml		D 40	000		0 70	A7E
Pa	rameter at 0%	% per phase	L= 1.	27,63mH		R= 40	,080		C= /	9,47μF
		shut down time		n above res	sults.				20	ms
Note: RLC is ¹⁾ P _{EUT} ²⁾ P _{AC} : condit ³⁾ Q _{AC}	s adjusted to : EUT output Real power ion value.	flow at S1 in Fig ower flow at S1 i	ne inverter gure 1. Pos	sitive mean	s power	from EUT			al is the (	) % test

⁴⁾ Fundamental of I_{AC} when RLC is adjusted.

⁵⁾ BL: Balance condition, IB: Imbalance condition.

Condition C:

EUT output power PEUT = 25 % – 33 %  $^{5)}$  of maximum

EUT input voltage  $^{6)}$  = <20 % of rated input voltage range

⁶⁾ Or minimum allowable EUT output level if greater than 33 %.

⁷⁾ Based on EUT rated input operating range. For example, If range is between X volts and Y volts, 20 % of range =X + 0,2 × (Y – X). Y shall not exceed 0,8 × EUT maximum system voltage (i.e., maximum allowable array open circuit voltage). In any case, the EUT should not be operated outside of its allowable input voltage range.

The tests had been performed on the HESS-HY-T-12K are valid for the HESS-HY-T1-12K since it is almost

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 59 of 101 Р



	Disconne				Q _{AC} 0%				33% n	omina	l powe	r	
CH1 Position	100.00 V/div : 200.0mV/div : 0.00 div	Disp 1	lay Group 2 3 4	)		Zoon	1:100.0k	Main:1.0M		AcqM 100k	ode : Noi S/s 1s	rmal s/div	
RHA 7018	599090 80000 80000 80000					afri 2							
CH2	50.000 A												
CH4	-50.000 A 50.000 A -50.000 A											· · · · · ·	
CH6 CH11	50.000 A -50.000 A 100.00 A												
CH10	<u>-100.00 A</u> 100.00 A												
CH12	-100.00 A 100.00 A	· · · · · · · · · · · · · · · · · · ·		· · · · · ·		· · · · ·							
	-100.00 A	· · · · · · · · · · · · · · · · · · ·		<u>.</u>		· · · · · ·							
-10000.00ms													0.00ms
\$ <u>7</u> \///		$\sim$	$\sim$	$\sim \sim$	$\sim \sim \sim$	<b>W</b> V	$\sim$	$\sim \sim \sim$	$\sim \sim \sim$	$\sim$	$\sim$	<u>^100m</u>	s∕/diy∕
							$\sim$		$\overline{\mathcal{M}}$			$\overline{\mathcal{M}}$	$\overline{\mathbb{N}}$
CH4	-50.000 A 50.000 A		~~~~	~~~		$\sim \sim$		~~~~		~~~~	~		
CH6	-50.000 A 50.000 A			~~~							~ <u>+</u>		
F CH11	-50.000 A 100.00 A -100.00 A 100.00 A												
CH10 CH12	100.00 A -100.00 A 100.00 A										· · · · · · · · · · · · · · · · · · ·		
	-100.00 A												
				ΔX	1	8.00ms							
-4899.99ms													399.99ms



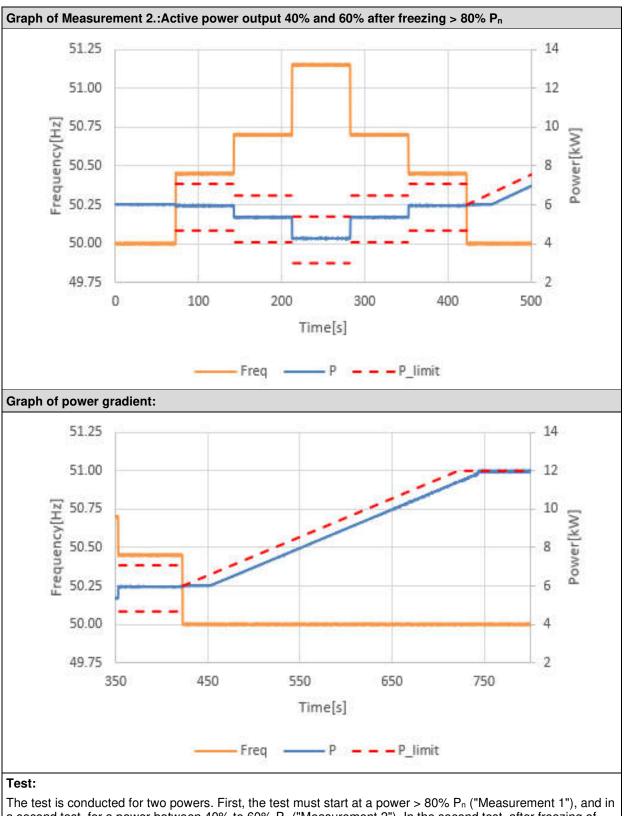
A.7.1.2.5 Re-connection				Р
Test result: HESS-HY-T-12	2K			
Test should prove that the r of voltage and frequency to			num delay of 20 secon	ds for restoration
		r Voltage (188,0 V)		
Time dela	y setting		Measured delay	
60				
	Over	Voltage (258,2 V)		
Time dela	y setting		Measured delay	
60	S		60,2s	
	Under I	Frequency (47,6 Hz)		
Time dela	y setting		Measured delay	
60	-		62,2s	
	Over F	Frequency (51,9 Hz)		
Time dela	y setting		Measured delay	
60	S		60,2s	
	Checks on no reco		ge or frequency is brou ts of table 1.	ight to just outside
	At 266,2V	At 180,0V	At 47,4Hz	At 52,1Hz
Confirmation that the Power Generating Module does not re-connect	No reconnection	No reconnection	No reconnection	No reconnection
<b>Note:</b> The tests had been perform same as in hardware and so		T-12K are valid for th	ne HESS-HY-T1-12K s	ince it is almost



<b>A.7.1.2.6 Frequency Drift and Step Change Stability test</b> This test should be carried out in accordance with Annex A.7.1.2.6.									
Test result: HESS-HY-T-1	2K								
	Start Change Test Time Co Frequency								
Positive Vector Shift	49,5Hz	+50 degrees			No trip				
Negative Vector Shift	50,5Hz	-50 degrees			No trip				
Positive Frequency drift	49,0Hz – 51,0 Hz	+0,95Hz/sec	2,1s		No trip				
Negative Frequency drift51,0Hz - 49,0 Hz-0,95Hz/sec2,1s									
Note:	•		•						

Four tests are required to be carried out with all protection functions enabled including loss of mains. For each stability test the Power Park Module should not tip during the test.

For the step change test the Power Park Module should be operated with a measurable output at the start frequency and then a vector shift should be applied by extending or reducing the time of a single cycle with subsequent cycles returning to the start frequency. The start frequency should then be maintained for a period of at least 10 s to complete the test. The Power Park Module should not trip during this test.


For frequency drift tests the Power Park Module should be operated with a measurable output at the start frequency and then the frequency changed in a ramp function at 0,95 Hzs⁻¹ to the end frequency. On reaching the end frequency it should be maintained for a period of at least 10 s. The Power Park Module should not trip during this test.



Test result: HESS-HY	′-T-12K						
1-min mean value [Hz]	: a) 50,00	b) 50,45	c) 50,70	d) 51,15	e) 50,70	f) 50,45	g) 50,00
1. Measurement a) to g	g): Active pow	er output > 8	0% Pn				
Frequency [Hz]:	50,00	50,45	50,70	51,15	50,70	50,45	50,00
P _{expected} [kW]:	N/A	11,88	11,28	10,20	11,28	11,88	N/A
P _{measured} [kW]:	11,96	11,83	11,23	10,16	11,24	11,84	11,98
∆P _{measured} /P _M [%]:	N/A	-0,42	-0,42	-0,33	-0,33	-0,33	N/A
2. Measurement a) to g	g): Active pow	er output 40°	% and 60% a	after freezing	> 80% P _n		
Frequency [Hz]:	50,00	50,45	50,70	51,15	50,70	50,45	50,00
P _{expected} [kW]:	N/A	5,88	5,28	4,20	5,28	5,88	N/A
P _{measured} [kW]:	6,02	5,96	5,36	4,28	5,36	5,96	11,97
∆P _{measured} /P _M [%]:	N/A	0,67	0,67	0,67	0,67	0,67	N/A
51.00 [7] 50.75 50.50 50.25 50.00 49.75							12 10 [MX] 8 bower[kM] 5
0	100	20 Freq	Time[s]	300	400 limit	500	5

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 63 of 101





a second test, for a power between 40% to 60%  $P_n$  ("Measurement 2"). In the second test, after freezing of the  $P_M$ , the available active power output must be increased to a value > 80%  $P_n$ , and after the network frequency of 50,4 Hz is fallen below, the rise of the active power gradient must be recorded.

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 64 of 101



Point g) must be held until the micro-generator is again feeding in with the active power output available.

## Assessment criterion:

For f = 50,4 Hz, the value of the P_M active power currently being generated is "frozen".

a) For adjustable micro-generators when:

1) the active power reduces between measuring points b) and f) given above with the set gradient  $P_M$  per Hz for a increasing frequency (or rises for a frequency decreasing again).

2) the maximum active power gradient occurring in point is less than the configured maximum active power per minute

3) the reaction value of the setpoint determined by the gradient characteristic curve does not differ from  $P_n$  by more than  $\pm$  10%.

4) the settling time is equal or below 2 s with an intentional delay set to zero

b) For partly adjustable micro-generators

1) when they behave as in a) within their adjustment range, and

2) when, outside the adjustable range, the power fed in on leaving the adjustment range remains constant until shutdown. Shutdown must be no later than at 51,5 Hz.

Note:



		Generatin	g Unit teste	d to BS EN	61000-3-12			
est result: HESS	6-HY-T-12K		9					
Generating	g Unit rating	per phase (r	.bb)		4,0 kW			
		At 45	5-55% of Re	gistered Cap kW	bacity		Harmo	onic %
Harmonic order	Measure	d Value (MV			red Value (N	IV) in %	Limit in BS EN61000-3-12	
	L1	L2	L3	L1	L2	L3	1 phase	3 phase
1st	8,923	8,983	8,848	51,305	51,652	50,875		
2nd	0,108	0,053	0,066	0,623	0,306	0,381	8,00	8,00
3rd	0,040	0,030	0,026	0,232	0,175	0,151	21,60	N/A
4th	0,139	0,132	0,141	0,797	0,761	0,808	4,00	4,00
5th	0,131	0,134	0,134	0,755	0,771	0,769	10,70	10,70
6th	0,010	0,005	0,007	0,059	0,030	0,042	2,67	2,67
7th	0,058	0,060	0,057	0,334	0,344	0,328	7,20	7,20
8th	0,058	0,051	0,062	0,335	0,295	0,357	2,00	2,00
9th	0,014	0,006	0,015	0,079	0,034	0,088	3,80	N/A
10th	0,030	0,033	0,029	0,173	0,188	0,169	1,60	1,60
11th	0,225	0,237	0,240	1,294	1,362	1,379	3,10	3,10
12th	0,007	0,005	0,005	0,038	0,030	0,029	1,33	1,33
13th	0,131	0,130	0,125	0,752	0,746	0,717	2,00	2,00
14th	0,016	0,015	0,018	0,091	0,087	0,104	N/A	N/A
15th	0,010	0,005	0,008	0,060	0,031	0,047	N/A	N/A
16th	0,028	0,031	0,028	0,162	0,177	0,163	N/A	N/A
17th	0,041	0,044	0,048	0,234	0,252	0,276	N/A	N/A
18th	0,006	0,005	0,005	0,036	0,031	0,030	N/A	N/A
19th	0,046	0,047	0,045	0,265	0,273	0,259	N/A	N/A
20th	0,022	0,026	0,023	0,127	0,147	0,132	N/A	N/A
21th	0,008	0,006	0,007	0,045	0,036	0,039	N/A	N/A
22th	0,016	0,016	0,016	0,094	0,094	0,092	N/A	N/A
23th	0,017	0,020	0,014	0,100	0,117	0,082	N/A	N/A
24th	0,006	0,006	0,006	0,036	0,035	0,034	N/A	N/A
25th	0,037	0,039	0,037	0,211	0,225	0,210	N/A	N/A
26th	0,019	0,020	0,020	0,111	0,113	0,116	N/A	N/A
27th	0,006	0,006	0,007	0,035	0,034	0,039	N/A	N/A
28th	0,028	0,028	0,026	0,158	0,162	0,149	N/A	N/A
29th	0,020	0,021	0,022	0,118	0,120	0,129	N/A	N/A
30th	0,005	0,006	0,006	0,031	0,034	0,032	N/A	N/A
	I	I	L	1	i	1	î.	L

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 66 of 101



i ne test requirem	ents are specified in Annex A.7.1.4.1.							Р
		Generatin	g Unit teste	d to BS EN	61000-3-12			
Test result: HES								
Generating		4,0 kW						
		At 4	5-55% of Reg 6.0	gistered Cap kW	Dacity		Harmo	onic %
Harmonic order	Measure	d Value (MV	· · · · ·		red Value (N	IV) in %	EN610	in BS 00-3-12
	L1	L2	L3	L1	L2	L3	1 phase	3 phase
31th	0,020	0,022	0,020	0,114	0,124	0,113	N/A	N/A
32th	0,020	0,021	0,023	0,114	0,118	0,131	N/A	N/A
33th	0,006	0,006	0,006	0,034	0,033	0,036	N/A	N/A
34th	0,017	0,017	0,018	0,100	0,099	0,101	N/A	N/A
35th	0,016	0,018	0,017	0,093	0,106	0,095	N/A	N/A
36th	0,005	0,005	0,005	0,030	0,029	0,031	N/A	N/A
37th	0,020	0,021	0,019	0,115	0,122	0,110	N/A	N/A
38th	0,013	0,012	0,013	0,072	0,071	0,075	N/A	N/A
39th	0,006	0,005	0,005	0,034	0,026	0,029	N/A	N/A
40th	0,014	0,013	0,014	0,081	0,074	0,079	N/A	N/A
41th	0,011	0,010	0,010	0,065	0,057	0,057	N/A	N/A
42th	0,004	0,005	0,005	0,024	0,027	0,026	N/A	N/A
43th	0,018	0,018	0,016	0,102	0,101	0,094	N/A	N/A
44th	0,011	0,011	0,011	0,063	0,065	0,065	N/A	N/A
45th	0,005	0,004	0,004	0,029	0,023	0,023	N/A	N/A
46th	0,013	0,015	0,013	0,076	0,085	0,077	N/A	N/A
47th	0,014	0,013	0,014	0,081	0,074	0,078	N/A	N/A
48th	0,004	0,004	0,004	0,022	0,024	0,025	N/A	N/A
49th	0,010	0,010	0,009	0,056	0,055	0,050	N/A	N/A
50th	0,012	0,013	0,013	0,070	0,074	0,075	N/A	N/A
THD_[%]	1			2,136	2,098	2,132	23	13
PWHD_[%]				3,265	3,396	3,314	23	22



		Genera	ating Unit te	sted to BS E	EN 61000-3-1	2		
Test result: I	HESS-HY-T-							
Genera	ating Unit rati	ng per phase	e (rpp)		4,0kW			
		At		ed output pow	/er		Harmo	nic [%]
Harmonic order	Measured Value (MV) in Amps			NKW Measured Value (MV) in %			in BS 00-3-12	
	L1	L2	L3	L1	L2	L3	1 phase	3 phase
1st	17,614	17,685	17,544	101,280	101,686	100,877		
2nd	0,129	0,074	0,068	0,741	0,425	0,388	8,00	8,00
3rd	0,035	0,032	0,023	0,204	0,182	0,133	21,60	N/A
4th	0,124	0,120	0,125	0,715	0,691	0,720	4,00	4,00
5th	0,168	0,169	0,170	0,964	0,974	0,978	10,70	10,70
6th	0,009	0,005	0,006	0,054	0,031	0,037	2,67	2,67
7th	0,058	0,060	0,058	0,332	0,343	0,333	7,20	7,20
8th	0,023	0,026	0,025	0,130	0,149	0,143	2,00	2,00
9th	0,013	0,005	0,014	0,077	0,029	0,082	3,80	N/A
10th	0,057	0,052	0,057	0,330	0,299	0,327	1,60	1,60
11th	0,225	0,237	0,232	1,291	1,363	1,335	3,10	3,10
12th	0,008	0,005	0,006	0,044	0,027	0,036	1,33	1,33
13th	0,327	0,328	0,322	1,883	1,884	1,849	2,00	2,00
14th	0,026	0,022	0,026	0,150	0,127	0,151	N/A	N/A
15th	0,005	0,005	0,009	0,029	0,028	0,051	N/A	N/A
16th	0,015	0,016	0,013	0,087	0,093	0,075	N/A	N/A
17th	0,110	0,115	0,116	0,635	0,662	0,666	N/A	N/A
18th	0,005	0,005	0,005	0,030	0,026	0,027	N/A	N/A
19th	0,104	0,104	0,098	0,598	0,597	0,565	N/A	N/A
20th	0,030	0,027	0,027	0,174	0,153	0,153	N/A	N/A
21th	0,006	0,005	0,005	0,035	0,027	0,031	N/A	N/A
22th	0,035	0,036	0,035	0,199	0,205	0,199	N/A	N/A
23th	0,049	0,046	0,049	0,279	0,262	0,282	N/A	N/A
24th	0,005	0,005	0,005	0,030	0,028	0,031	N/A	N/A
25th	0,051	0,054	0,051	0,293	0,310	0,292	N/A	N/A
26th	0,021	0,022	0,017	0,123	0,126	0,098	N/A	N/A
27th	0,006	0,006	0,005	0,036	0,034	0,028	N/A	N/A
28th	0,031	0,030	0,030	0,177	0,175	0,175	N/A	N/A
29th	0,030	0,026	0,026	0,170	0,149	0,148	N/A	N/A
30th	0,006	0,006	0,007	0,033	0,033	0,038	N/A	N/A

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 68 of 101



		Gener	ating Unit te	sted to BS I	EN 61000-3-1	2			
Test result: H	IESS-HY-T-	12K							
Genera	Generating Unit rating per phase (rpp)				4,0kW				
		At	100% of rate	ed output pov )kW	ver		Harmonic [%]		
Harmonic order	Measure	ed Value (MV	,		red Value (M	V) in %	Limit in BS EN61000-3-12		
	L1	L2	L3	L1	L2	L3	1 phase	3 phase	
31th	0,045	0,046	0,044	0,256	0,267	0,253	N/A	N/A	
32th	0,020	0,024	0,024	0,114	0,139	0,139	N/A	N/A	
33th	0,007	0,006	0,006	0,041	0,034	0,033	N/A	N/A	
34th	0,015	0,015	0,016	0,087	0,087	0,091	N/A	N/A	
35th	0,014	0,016	0,019	0,082	0,089	0,111	N/A	N/A	
36th	0,006	0,006	0,006	0,033	0,037	0,033	N/A	N/A	
37th	0,021	0,022	0,022	0,121	0,125	0,124	N/A	N/A	
38th	0,026	0,027	0,026	0,151	0,157	0,150	N/A	N/A	
39th	0,006	0,006	0,006	0,032	0,032	0,033	N/A	N/A	
40th	0,026	0,026	0,027	0,148	0,152	0,154	N/A	N/A	
41th	0,024	0,027	0,030	0,140	0,157	0,170	N/A	N/A	
42th	0,006	0,007	0,006	0,034	0,041	0,034	N/A	N/A	
43th	0,040	0,043	0,039	0,232	0,248	0,225	N/A	N/A	
44th	0,010	0,008	0,011	0,055	0,049	0,063	N/A	N/A	
45th	0,008	0,006	0,006	0,046	0,035	0,036	N/A	N/A	
46th	0,021	0,022	0,022	0,122	0,125	0,129	N/A	N/A	
47th	0,031	0,028	0,029	0,179	0,164	0,167	N/A	N/A	
48th	0,006	0,006	0,006	0,036	0,034	0,036	N/A	N/A	
49th	0,027	0,027	0,024	0,155	0,154	0,135	N/A	N/A	
50th	0,029	0,028	0,030	0,165	0,163	0,171	N/A	N/A	
THD_[%]				2,988	2,960	2,922	23	13	
PWHD_[%]				5,942	6,020	5,938	23	22	

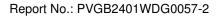


he test requireme			g Unit teste		61000-3-12			
est result: HESS	S-HY-T1-12		g onn teste		01000 0 12			
Generating	g Unit rating	per phase (r	bb)		4,0 kW			
	_	At 45	5-55% of Reg		acity		Harmo	onic %
				kW				in BS
Harmonic order	Measure	d Value (MV	) in Amps	Measur	ed Value (N	EN610	00-3-12	
	L1	L2	L3	L1	L2	L3	1 phase	3 phase
1st	8,874	8,934	8,799	51,025	51,371	50,592		
2nd	0,108	0,053	0,068	0,622	0,303	0,388	8,00	8,00
3rd	0,040	0,031	0,027	0,232	0,179	0,153	21,60	N/A
4th	0,139	0,133	0,141	0,799	0,764	0,812	4,00	4,00
5th	0,131	0,134	0,134	0,754	0,770	0,768	10,70	10,70
6th	0,011	0,005	0,008	0,063	0,031	0,045	2,67	2,67
7th	0,059	0,061	0,058	0,337	0,348	0,331	7,20	7,20
8th	0,057	0,050	0,061	0,326	0,290	0,350	2,00	2,00
9th	0,014	0,006	0,016	0,080	0,035	0,090	3,80	N/A
10th	0,029	0,032	0,029	0,166	0,182	0,164	1,60	1,60
11th	0,225	0,237	0,240	1,292	1,361	1,377	3,10	3,10
12th	0,007	0,005	0,005	0,038	0,031	0,029	1,33	1,33
13th	0,133	0,132	0,127	0,764	0,758	0,728	2,00	2,00
14th	0,017	0,015	0,019	0,095	0,088	0,107	N/A	N/A
15th	0,010	0,005	0,008	0,059	0,030	0,048	N/A	N/A
16th	0,030	0,033	0,030	0,173	0,188	0,174	N/A	N/A
17th	0,044	0,047	0,052	0,253	0,271	0,297	N/A	N/A
18th	0,006	0,005	0,005	0,035	0,032	0,028	N/A	N/A
19th	0,043	0,044	0,042	0,244	0,254	0,243	N/A	N/A
20th	0,023	0,027	0,024	0,132	0,154	0,140	N/A	N/A
21th	0,008	0,006	0,007	0,046	0,036	0,038	N/A	N/A
22th	0,017	0,016	0,016	0,096	0,092	0,094	N/A	N/A
23th	0,018	0,021	0,015	0,106	0,122	0,084	N/A	N/A
24th	0,006	0,006	0,006	0,037	0,035	0,033	N/A	N/A
25th	0,038	0,040	0,037	0,216	0,228	0,215	N/A	N/A
26th	0,018	0,019	0,019	0,105	0,108	0,109	N/A	N/A
27th	0,006	0,006	0,006	0,037	0,034	0,037	N/A	N/A
28th	0,026	0,027	0,025	0,152	0,157	0,144	N/A	N/A
29th	0,021	0,020	0,022	0,119	0,118	0,129	N/A	N/A
30th	0,005	0,006	0,006	0,032	0,034	0,033	N/A	N/A

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 70 of 101



he test requirem	ents are specified in Annex A.7.1.4.1.							Ρ
			g Unit teste	d to BS EN	61000-3-12			
est result: HES	S-HY-T1-12	K						
Generatin	g Unit rating			4,0 kW				
		At 45	5-55% of Reg 6,0		bacity		Harmo	onic %
Harmonic order	Measure	d Value (MV	· · · · ·		red Value (M	IV) in %	EN610	
	L1	L2	L3	L1	L2	L3	1 phase	3 phas
31th	0,020	0,022	0,020	0,114	0,125	0,113	N/A	N/A
32th	0,019	0,020	0,022	0,107	0,112	0,124	N/A	N/A
33th	0,006	0,005	0,006	0,035	0,031	0,036	N/A	N/A
34th	0,018	0,017	0,018	0,101	0,099	0,101	N/A	N/A
35th	0,016	0,018	0,017	0,091	0,104	0,095	N/A	N/A
36th	0,005	0,005	0,005	0,029	0,030	0,030	N/A	N/A
37th	0,021	0,022	0,019	0,118	0,126	0,112	N/A	N/A
38th	0,013	0,013	0,014	0,074	0,074	0,079	N/A	N/A
39th	0,006	0,005	0,005	0,033	0,027	0,029	N/A	N/A
40th	0,014	0,013	0,014	0,079	0,075	0,079	N/A	N/A
41th	0,012	0,010	0,010	0,068	0,060	0,059	N/A	N/A
42th	0,004	0,005	0,005	0,025	0,027	0,026	N/A	N/A
43th	0,018	0,018	0,016	0,103	0,101	0,094	N/A	N/A
44th	0,012	0,012	0,012	0,068	0,067	0,069	N/A	N/A
45th	0,005	0,004	0,004	0,029	0,023	0,023	N/A	N/A
46th	0,013	0,015	0,014	0,076	0,086	0,079	N/A	N/A
47th	0,014	0,013	0,014	0,083	0,076	0,079	N/A	N/A
48th	0,004	0,004	0,004	0,024	0,025	0,025	N/A	N/A
49th	0,009	0,009	0,008	0,054	0,052	0,048	N/A	N/A
50th	0,012	0,013	0,013	0,070	0,073	0,075	N/A	N/A
THD_[%]				2,142	2,106	2,141	23	13
PWHD_[%]				3,294	3,409	3,334	23	22




		Genera	ating Unit te	sted to BS E	EN 61000-3-1	2		
Test result: I	HESS-HY-T1		<b>.</b>					
Genera								
		At		ed output pow	/er		Harmo	nic [%]
Harmonic order	Measured Value (MV) in Amps			NKW Measured Value (MV) in %			in BS 00-3-12	
	L1	L2	L3	L1	L2	L3	1 phase	3 phase
1st	17,580	17,638	17,502	101,087	101,416	100,637		
2nd	0,134	0,080	0,071	0,772	0,459	0,408	8,00	8,00
3rd	0,034	0,033	0,022	0,194	0,189	0,126	21,60	N/A
4th	0,125	0,121	0,126	0,717	0,695	0,727	4,00	4,00
5th	0,153	0,155	0,155	0,880	0,889	0,893	10,70	10,70
6th	0,010	0,005	0,006	0,059	0,031	0,037	2,67	2,67
7th	0,073	0,075	0,074	0,422	0,433	0,423	7,20	7,20
8th	0,038	0,042	0,041	0,217	0,243	0,234	2,00	2,00
9th	0,012	0,005	0,011	0,070	0,026	0,066	3,80	N/A
10th	0,058	0,054	0,060	0,335	0,311	0,346	1,60	1,60
11th	0,240	0,252	0,247	1,382	1,450	1,423	3,10	3,10
12th	0,009	0,005	0,007	0,051	0,026	0,040	1,33	1,33
13th	0,334	0,332	0,329	1,919	1,911	1,893	2,00	2,00
14th	0,016	0,022	0,018	0,091	0,125	0,102	N/A	N/A
15th	0,006	0,005	0,011	0,033	0,028	0,062	N/A	N/A
16th	0,041	0,036	0,038	0,234	0,210	0,218	N/A	N/A
17th	0,120	0,126	0,120	0,688	0,724	0,692	N/A	N/A
18th	0,006	0,003	0,005	0,034	0,020	0,028	N/A	N/A
19th	0,207	0,204	0,202	1,188	1,175	1,160	N/A	N/A
20th	0,008	0,004	0,007	0,044	0,022	0,040	N/A	N/A
21th	0,005	0,005	0,008	0,029	0,030	0,048	N/A	N/A
22th	0,023	0,022	0,019	0,133	0,127	0,111	N/A	N/A
23th	0,011	0,017	0,017	0,065	0,099	0,095	N/A	N/A
24th	0,005	0,004	0,004	0,026	0,021	0,022	N/A	N/A
25th	0,083	0,085	0,081	0,477	0,489	0,465	N/A	N/A
26th	0,026	0,021	0,025	0,149	0,120	0,143	N/A	N/A
27th	0,004	0,006	0,005	0,024	0,035	0,030	N/A	N/A
28th	0,028	0,029	0,028	0,159	0,164	0,159	N/A	N/A
29th	0,049	0,047	0,051	0,281	0,270	0,294	N/A	N/A
30th	0,005	0,005	0,005	0,027	0,027	0,026	N/A	N/A

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 72 of 101



		Genera	ating Unit te	sted to BS I	EN 61000-3-1	2		
Test result: F	IESS-HY-T1	-12K						
Genera	ting Unit rati	ng per phase	e (rpp)		4,0kW			
		At	100% of rate	ed output pov )kW	ver		Harmo	nic [%]
Harmonic order	Measure	d Value (MV	,		red Value (M	V) in %	Limit EN6100	
	L1	L2	L3	L1	L2	L3	1 phase	3 phase
31th	0,052	0,055	0,055	0,299	0,316	0,315	N/A	N/A
32th	0,025	0,022	0,021	0,144	0,127	0,124	N/A	N/A
33th	0,005	0,005	0,004	0,031	0,028	0,023	N/A	N/A
34th	0,034	0,032	0,034	0,195	0,187	0,198	N/A	N/A
35th	0,044	0,040	0,041	0,256	0,229	0,237	N/A	N/A
36th	0,005	0,007	0,006	0,029	0,038	0,032	N/A	N/A
37th	0,053	0,052	0,054	0,304	0,300	0,312	N/A	N/A
38th	0,017	0,019	0,015	0,100	0,108	0,085	N/A	N/A
39th	0,005	0,005	0,004	0,030	0,029	0,025	N/A	N/A
40th	0,021	0,023	0,024	0,123	0,130	0,138	N/A	N/A
41th	0,017	0,013	0,010	0,099	0,077	0,058	N/A	N/A
42th	0,006	0,009	0,007	0,034	0,053	0,040	N/A	N/A
43th	0,013	0,014	0,015	0,077	0,082	0,084	N/A	N/A
44th	0,017	0,017	0,012	0,099	0,096	0,072	N/A	N/A
45th	0,006	0,006	0,006	0,034	0,034	0,036	N/A	N/A
46th	0,046	0,049	0,045	0,264	0,280	0,257	N/A	N/A
47th	0,028	0,022	0,024	0,161	0,126	0,140	N/A	N/A
48th	0,007	0,007	0,006	0,039	0,039	0,036	N/A	N/A
49th	0,028	0,029	0,029	0,158	0,166	0,169	N/A	N/A
50th	0,044	0,042	0,044	0,255	0,243	0,255	N/A	N/A
THD_[%]				3,279	3,239	3,203	23	13
PWHD_[%]				8,218	8,183	8,087	23	22





A.7.1.4.2 Power factor The test requirements are specified in Annex A.7.1.4.2.						
Test result: HESS-H	Y-T-12K					
Output power	216,2 V	230,0 V	253,0 V			
20%	0,998	0,998	0,993	Measured at three voltage levels and at f output. Voltage to be		
50%	1,000	0,999	0,999			
75%	1,000	1,000	0,999	maintained v		
100%	1,000	1,000	0,999	<ul> <li>of the stated level dur the test.</li> </ul>		
Limit	>0,95	>0,95	>0,95			

The test set up shall be such that the Power Park Module supplies full load to the DNO's Distribution Syster via the power factor (pf) meter and the variac as shown below in figure A.7.3. The Power Park Module pf should be within the limits given in paragraph 11.1.5, for three test voltages 230 V – 6%, 230V and 230 V + 10%.

The tests had been performed on the HESS-HY-T-12K are valid for the HESS-HY-T1-12K since it is almost same as in hardware and software.



A.7.1.4.3 Vol The test requirem	tage Flick nents are s		n Ann	iex /	A.7.1.4.3.					Р	
Test result: HES	S-HV-T-1	2K									
			Start	ina		Stopping			Running		
		d _{max}	d		d _(t)	d _{max}	dc	d _(t)	Pst	Ptt 2 hours	
Measured values at test impedance	L1	0,716	0,18		0,000	0,716	0,185	0,000	0,134	0,123	
Normalised to standard impedance	L1	0,716	0,18	35	0,000	0,716	0,185	0,000	0,134	0,123	
Normalised to maximum impedance	L1	0,716	0,18	35	0,000	0,716	0,185	0,000	0,134	0,123	
Measured values at test impedance	L2	0,578	0,18	33	0,000	0,578	0,183	0,000	0,130	0,120	
Normalised to standard impedance	L2	0,578	0,18	33	0,000	0,578	0,183	0,000	0,130	0,120	
Normalised to maximum impedance	L2	0,578	0,18	33	0,000	0,578	0,183	0,000	0,130	0,120	
Measured values at test impedance	L3	0,549	0,19	95	0,000	0,549	0,195	0,000	0,139	0,125	
Normalised to standard impedance	L3	0,549	0,19	95	0,000	0,549	0,195	0,000	0,139	0,125	
Normalised to maximum impedance	L3	0,549	0,19	95	0,000	0,549	0,195	0,000	0,139	0,125	
Limits set under 61000-3-1		4%	3,39	%	3,3% ^{500ms}	4%	3,3%	3,3% ^{500ms}	1,0	0,65	
Testinesede		R		(	0,240	Ω	2	XI	0,150	Ω	
Test impeda	nce	Z		(	0,283	Ω					
		R		(	0,240	Ω		XI	0,150	Ω	
Standard impe	dance	Z		(	0,283	Ω					
		R			0,240	Ω		XI	0,150	Ω	
Maximum Impe	edance	Z			0,283	Ω			,		
Test result: HES	S-HY-T1-	12K	0				01		_		
			Start				Stopping			lunning	
Measured		d _{max}	dc	;	<b>d</b> (t)	d _{max}	dc	<b>d</b> (t)	Pst	Ptt 2 hours	
values at test impedance	L1	0,720	0,18	36	0,000	0,720	0,186	0,000	0,136	0,124	
Normalised to standard	L1	0,720	0,18	36	0,000	0,720	0,186	0,000	0,136	0,124	

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 75 of 101



		n Annex	A.7.1.4.3.					Ρ
								- 1
L1	0,720	0,186	0,000	0,720	0,186	0,000	0,136	0,124
L2	0,581	0,184	0,000	0,581	0,184	0,000	0,131	0,120
L2	0,581	0,184	0,000	0,581	0,184	0,000	0,131	0,120
L2	0,581	0,184	0,000	0,581	0,184	0,000	0,131	0,120
L3	0,552	0,196	0,000	0,552	0,196	0,000	0,139	0,126
L3	0,552	0,196	0,000	0,552	0,196	0,000	0,139	0,126
L3	0,552	0,196	0,000	0,552	0,196	0,000	0,139	0,126
BS EN 1	4%	3,3%	3,3% ^{500ms}	4%	3,3%	3,3% ^{500ms}	1,0	0,65
200	R		0,240	Ω	2	XI	0,150	Ω
nce	Z		0,283	Ω				
danaa	R		0,240	Ω		XI	0,150	Ω
uance	Z		0,283	Ω				
danco	R		0,240	Ω	2	XI	0,150	Ω
uance	Z		0,283	Ω				
	L1 L2 L2 L2 L2 L3 L3 L3 BS EN	L1 0,720 L2 0,581 L2 0,581 L2 0,581 L2 0,581 L3 0,552 L3 0,552 L3 0,552 L3 0,552 BS EN 4% nce R Z dance R Z Ance R	ents are specified in Annex         L1       0,720       0,186         L2       0,581       0,184         L2       0,581       0,184         L2       0,581       0,184         L2       0,581       0,184         L3       0,552       0,196         L3       0,552       0,196         BS EN       4%       3,3%         nce       R       1         Cance       R       2         Cance       R       3	R       0,240         Z       0,240	ents are specified in Annex A.7.1.4.3.         L1       0,720       0,186       0,000       0,720         L2       0,581       0,184       0,000       0,581         L3       0,552       0,196       0,000       0,552         L3       0,552       0,196       0,000       0,552         BS EN       4%       3,3% $3,3\%$ 4%         nce       R       0,240 $\Omega$ dance       R       0,240 $\Omega$ R       0,240 $\Omega$ dance       R       0,240 $\Omega$	ents are specified in Annex A.7.1.4.3.         L1       0,720       0,186       0,000       0,720       0,186         L2       0,581       0,184       0,000       0,581       0,184         L3       0,552       0,196       0,000       0,552       0,196         L3       0,552       0,196       0,000       0,552       0,196         L3       0,552       0,196       0,000       0,552       0,196         BS EN       4%       3,3%       3,3%       500ms       4%       3,3%         nce       R       0,240       Ω       2         dance       R       0,240       Ω       2         Z       0,283       Ω       2       2         dance       R       0,240       Ω       2         dance       R       0,240	L1         0,720         0,186         0,000         0,720         0,186         0,000           L2         0,581         0,184         0,000         0,581         0,184         0,000           L3         0,552         0,196         0,000         0,552         0,196         0,000           BS EN         4%         3,3%         3,3%         500ms         4%         3,3%         500ms           dance         R         0,240	ents are specified in Annex A.7.1.4.3.         L1       0,720       0,186       0,000       0,720       0,186       0,000       0,136         L2       0,581       0,184       0,000       0,581       0,184       0,000       0,131         L3       0,552       0,196       0,000       0,552       0,196       0,000       0,139         L3       0,552       0,196       0,000       0,552       0,196       0,000       0,139         BS EN       4%       3,3%       3,3%       4%       3,3%       3,3%       1,0         mce       R       0,240       Ω       XI       0,150         dance       R       0,240       Ω       XI       0,150

#### Note

For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalised values where the power factor of the generation output is 0,98 or above.

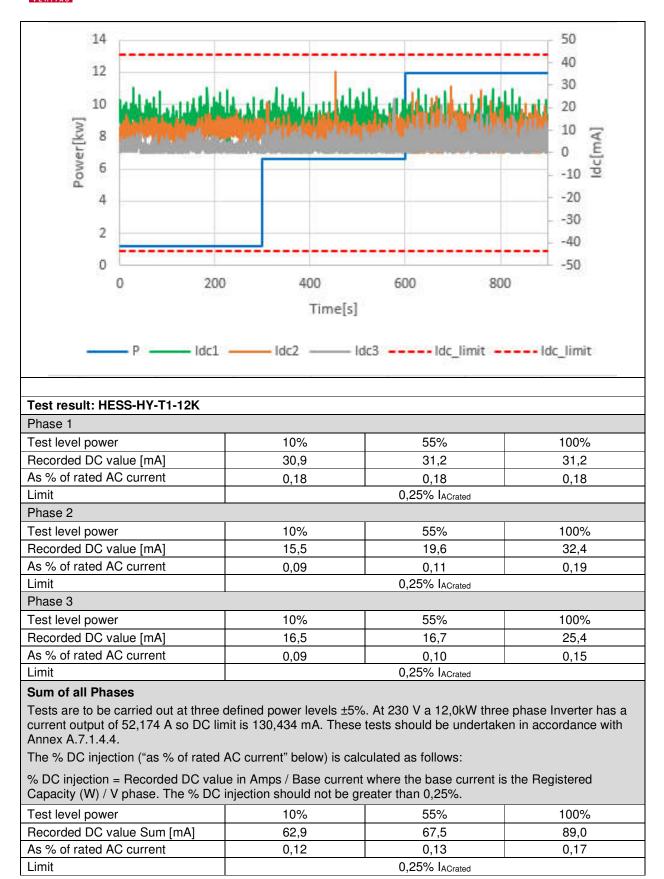
Normalised value = Measured value*reference source resistance/measured source resistance at test point.

Three phase units reference source resistance is 0,24  $\boldsymbol{\Omega}$ 

Where the power factor of the output is under 0,98 then the  $X_i$  to R ratio of the test impedance should be close to that of the Standard impedance.

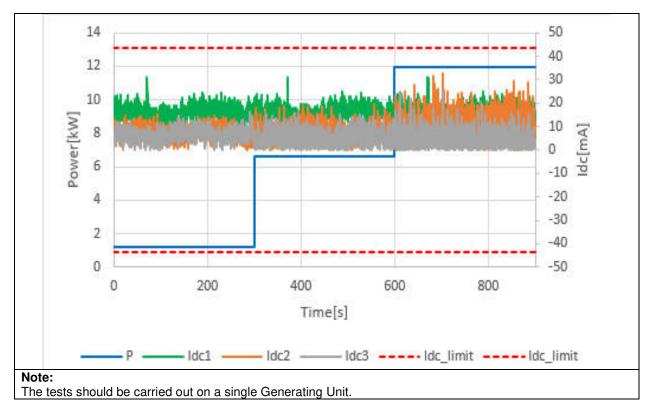
The stopping test should be a trip from full load operation.




Test result: HESS-HY-T-12K			
Phase 1			
Test level power	10%	55%	100%
Recorded DC value [mA]	29,1	29,0	28,5
As % of rated AC current	0,17	0,17	0,16
Limit		0,25% I _{ACrated}	
Phase 2			
Test level power	10%	55%	100%
Recorded DC value [mA]	18,4	36,2	29,5
As % of rated AC current	0,11	0,21	0,17
Limit		0,25% IACrated	
Phase 3			
Test level power	10%	55%	100%
Recorded DC value [mA]	10,7	24,2	21,1
As % of rated AC current	0,06	0,14	0,12
Limit		0,25% I _{ACrated}	

The % DC injection ("as % of rated AC current" below) is calculated as follows:

% DC injection = Recorded DC value in Amps / Base current where the base current is the Registered Capacity (W) / V phase. The % DC injection should not be greater than 0,25%.


	J		
Test level power	10%	55%	100%
Recorded DC value Sum [mA]	58,2	89,4	79,1
As % of rated AC current	0,11	0,17	0,15
Limit		0,25% IACrated	





No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 78 of 101







<b>A.7.1.5 Short Circuit Current Contribution for Inverters</b> The test requirements are specified in Annex A.7.1.5.								
Test result: HESS-HY-T-12K								
For a directly coupled SSEG For a Inverter S								
Phase 1		[						
Parameter	Symbol	Value	Time after fault	Volts	Amps			
Peak Short Circuit current	i _p	N/A	20ms	-28,7Vac	-22,65A			
Initial Value of aperiodic current	A	N/A	100ms	27,8Vac	0,02A			
Initial symmetrical short-circuit current*	I _k	N/A	250ms	-17,4Vac	0,00A			
Decaying (aperiodic) component of short circuit current*	i _{DC}	N/A	500ms	-22,8Vac	-0,04A			
Reactance/Resistance Ratio of source*	×/ _R	N/A	Time to trip	0,050s	In seconds			
Phase 2		1						
Parameter	Symbol	Value	Time after fault	Volts	Amps			
Peak Short Circuit current	<i>i</i> p	N/A	20ms	28,0Vac	4,32A			
Initial Value of aperiodic current	A	N/A	100ms	12,1Vac	0,07A			
Initial symmetrical short-circuit current*	l _k	N/A	250ms	-27,8Vac	0,07A			
Decaying (aperiodic) component of short circuit current*	i _{DC}	N/A	500ms	4,4Vac	0,00A			
Reactance/Resistance Ratio of source*	X/R	N/A	Time to trip	0,050s	In seconds			
Phase 3								
Parameter	Symbol	Value	Time after fault	Volts	Amps			
Peak Short Circuit current	i _p	N/A	20ms	-10,2Vac	8,61A			
Initial Value of aperiodic current	A	N/A	100ms	0,82Vac	-0,10A			
Initial symmetrical short-circuit current*	l _k	N/A	250ms	-27,6Vac	0,10A			
Decaying (aperiodic) component of short circuit current*	i _{DC}	N/A	500ms	9,6Vac	0,00A			
Reactance/Resistance Ratio of source*	×/ _R	N/A	Time to trip	0,050s	In seconds			
Note:	1	1						

The values of voltage and current should be recorded for a period of up to 1 second when the changeover switch should be returned to the normal position. The voltage and current at relevant times shall be recorded in the type test report (Appendix A2-3) including the time taken for the Power Park Modul to trip. (It is expected that the Power Park Module will trip on either loss of mains or under voltage in less than 1 s). The tests had been performed on the HESS-HY-T-12K are valid for the HESS-HY-T1-12K since it is almost same as in hardware and software.

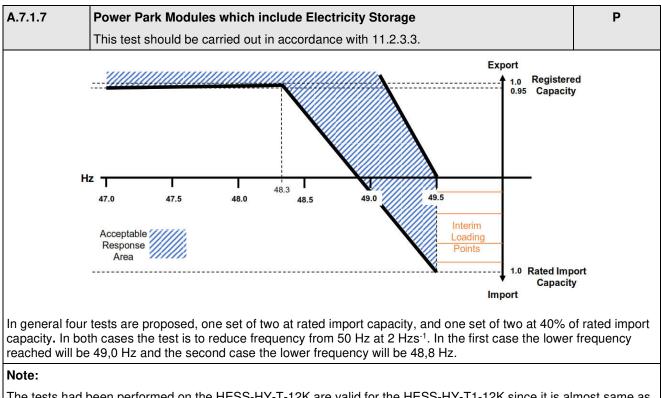


<b>A.7.1.6 Self Monitoring – Solid state Disconnection</b> . The test requirements are specified in Annex A.7.1.6.				
It has been verified that in the event of the solid state switching device failing to disconnect the SSEG, the voltage on the output side of the switching device is reduced to a value below 50 volts within 0,5 seconds.	N/A			
Note:				
Unit do not provide solid state switching relays. In case the semiconductor bridge is switcher voltage on the output drops to 0. In this case the relays on the output will also open (5.5.2.1 Fit to VDE 0124-100).				



A.7.1.7	Power Park Modules which	include Electricity Storage		Р			
	This test should be carried out in accordance with 11.2.3.3.						
		Test 1:					
		100% rated import power, 50,00	0 Hz to 49,00 Hz w	ith 2 Hzs ⁻¹			
		Start: 50 ± 0,01 Hz	End: 49,0	0 Hz			
Frequency	[Hz]:	50,00	49,00	)			
Active powe	er [kW]:	-11,74	-1,80				
Reactive Po	ower [kVar]:	0,37	0,30				
		Test 2:					
		100% rated import power 50,00	) Hz to 48,80 Hz wi	th 2 Hzs⁻¹			
		Start: 50 ± 0,01 Hz	End: 48,80Hz				
Frequency	[Hz]:	50,00	48,80				
Active power [kW]:		-11,91	2,39				
Reactive Power [kVar]:		0,37	0,45				
		Test	3:				
		40% rated import power 50,00	Hz to 49,00 Hz wit	h 2 Hzs ⁻¹			
		Start: 50 ± 0,01 Hz	End: 49,0	0 Hz			
Frequency	[Hz]:	50,00	49,00	)			
Active powe	er [kW]:	-4,78	5,20				
Reactive Po	ower [kVar]:	0,32	0,37				
		Test	Test 4:				
		40% rated import power 50,00	Hz to 48,80 Hz wit	h 2 Hzs ⁻¹			
		Start: 50 ± 0,01 Hz	End: 48,8	0 Hz			
Frequency	[Hz]:	50,00	48,80	)			
Active powe	er [kW]:	-4,77	9,16				
Reactive Po	ower [kVar]:	0,33	0,26				
Tooti							

Test:


(a) When the frequency falls to 49,5 Hz the automatic response shall start;

(b) The frequency response characteristic shall be within the shaded area of Figure 4;

(c) If the Electricity Storage device is not capable of moving from an import level to an appropriate export level within 20 s of the frequency falling to 49,2 Hz, then it shall cease to import; and

(d) If the Electricity Storage device has not achieved at least zero Active Power import when the frequency has reached 48,9 Hz it shall cease to import immediately.





The tests had been performed on the HESS-HY-T-12K are valid for the HESS-HY-T1-12K since it is almost same as in hardware and software.



A.7.2.3	Output Pow	er with falling	g Frequency				Р
Test result:	HESS-HY-T-1	2K					1
5-min mean	value (each)	a)	b)	c)	d)	e)	f)
Frequency [l	Hz]:	50,00	49,50	49,00	48,00	47,60	47,10
Active powe	r [kW]:	11,91	11,92	11,97	11,97	11,99	11,99
ΔP/P _{max} [%]:			-0,67	-0,25	-0,25	-0,08	-0,08
Graph of fre	equency a) to	b) to c) to d)	to e) to f):				
5	50.50						14
	50.00						12
50.							
	19.50						10
된 4	19.00						8 2
ency	18.50						-6 b
Frequency[Hz]	18.00						8 6 4
	17.50						2
	17.00					L	0
2	16.50 L	200 400	600	800 1000	) 1200	1400 160	-2
	U	200 400			, 1200	1400 100	0
			T	ime[s]			
				=р			
				- <u> </u>			

#### Note:

For a CHP the test point a) at 50,00 Hz is taken as Registered capacity  $(P_{max})$  due to limited discrete operating point of the CHP's thermal process.

Electronic inverter no power reduction take place.

The tests had been performed on the HESS-HY-T-12K are valid for the HESS-HY-T1-12K since it is almost same as in hardware and software.



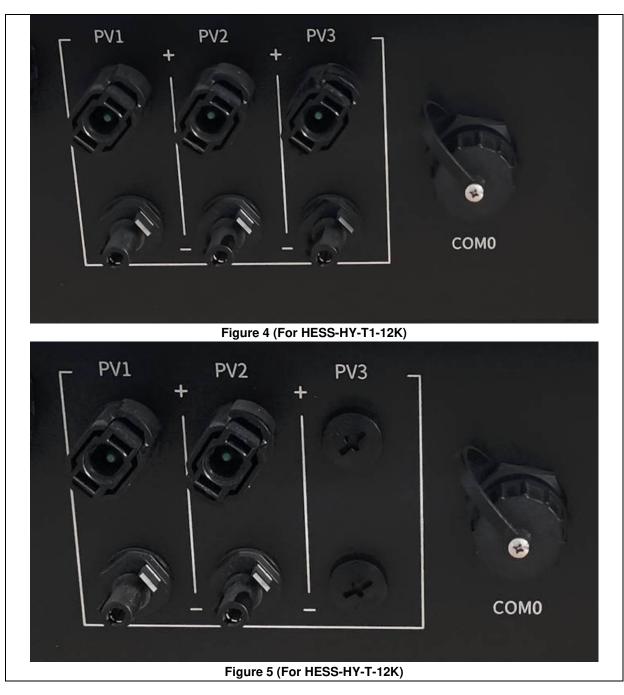
Wiring fuctional tests: If required by para 15.2.1.	N/A			
Confirm that the relevant test schedule is attached (test to be undertaken at time of commissioning)	N/A			
Note:				
The inverter was tested in a test laboratory. The correct wiring functional test in the filed has to be done by the responsible person for the installation of the plant.				



Cyber security, required by paragraph 9.1.7		Р
Confirm that the Manufacturer or Installer of the Micro- describing how the Micro-generator has been designed requirements, as detailed in 9.1.7.	Yes	
	Jiangsu Hanchu Energy Technology Co.,Ltd	
Jiangsu Hanchu Energy Technology Co.,Ltd	Declared by:	
Manufacturer's declaration	Company name: Jiangsu Hanchu Energy Technology Co.,Ltd	
<ul> <li>We, (Company: Jiangsu Hanchu Energy Technology Co.,Ltd, Address:</li> <li>No.588,Jinhui Road,Huishan District, Wuxi City,Jiangsu Province, China),</li> <li>hearby declare that all our below listed inverters comply with the cyber</li> <li>security requirements of the standard G99-1 and G98-1:</li> <li>Model no.:</li> <li>For G98-1: HESS-HY-T-05K, HESS-HY-T-06K, HESS-HY-T-08K,</li> <li>HESS-HY-T-10K,</li> <li>HESS-HY-T-10K,</li> <li>HESS-HY-T-10K,</li> <li>HESS-HY-T-10K,</li> <li>For G99-1: HESS-HY-T-12K, HESS-HY-T1-12K</li> <li>Requirements listed in the standard(s):</li> <li>ETSI EN 303 645;</li> </ul>	Responsible person: Allen Zhu Signature (and/or Stamp): ીકે !! ૧૦ ટેમ્પ્સ Date: પ્ર૦ગ્મ, તો, ૧૦	
<ul> <li>relevant aspects of PAS 1879 "Energy smart appliances – Demand side response operation – Code of practice";</li> <li>relevant aspects of "Distributed Energy Resources – Cyber Security Connection Guidance" published by BEIS and the ENA;</li> <li>Any other relevant standard that has been incorporated in the design of the Power Generating Module.</li> </ul>		
Page 1of 2	Page 2 of 2	
Note:		
Different levels of access, all are password protected, of	oniy certain parameters can be changed	on

maintenance level.




Logic Interface (input port) Required by paragrap	ph 11.1.3.1	Р
Confirm that an input port is provided and can be used to shut down the module.		
Note:		
Manufacturer information provided.		
Provide high level description of logic interface, e.g. signal	details in 11.1.3.1 such as AC or DC	Yes
Logical interfaces are implemented by external device external device is connected to COM0 of the power Pins 1 and 10 of the DI port of the external device an When the switch is closed, the generating module ca When the switch is opened, the logical port has a DC active power to zero within 5 seconds.	generation module (Figure 4 and Figure 5 re connected to the switch or contactor. an work normally.	).
	COM1	
	COM2	
	COM3	
SSE NAUCH SS	SERVER	
Ai-Lo	ogger 1000	
	stores 2	
	LAN DI R5T	55
No. 10	PL	
Ai-Logger 1000 co	ommunication interface	

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 87 of 101

Tel: +86 769 8998 2098 Fax: +86 769 8599 1080 Email: <u>customerservice.dg</u>@bureauveritas.com TRF No. G99/1 VER.3







No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 88 of 101



Report No.: PVGB2401WDG0057-2

Annex No. 1 EMC report

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 89 of 101







# EMC TEST REPORT

MODEL NO .: Refer to model list

- RECEIVED: Dec.21, 2023
  - ISSUED: Dec.27, 2023

#### APPLICANT: Jiangsu Hanchu Energy Technology Co.,Ltd ADDRESS: No.588,Jinhui Road,Huishan District ,Wuxi City,Jiangsu Province,China

#### ISSUED BY: BUREAU VERITAS ADT (Shanghai) Corporation

LAB LOCATION: No. 829, Xinzhuan Road, Shanghai, P.R.China (201612)

This test report consists of 219 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The test results in the report only apply to the tested item. The test results in this report are traceable to the national or international standards.

Report No. BVKJ-ESH-P231213828-1

Page 1 of 219

CE-EMC-ITE V1.1

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 90 of 101





#### 1 TEST PROGRAM

PRODUCT: Grid-connected hybrid Inverter BRAND:

1 HANCHU ESS

MODEL NO .: Refer to model list

APPLICANT: Jiangsu Hanchu Energy Technology Co., Ltd

TESTED: --

Emission : EN 62920 :2017+A11 :2020, EN 62920 :2017+A1 :2021

(IEC 62920 :2017+A1 :2021) ;

EN 61000-2-2 :2002+A1 :2017, EN 61000-2-2 :2002+A2 :2019

(IEC 61000-2-2 :2002+A1 :2017+A2 :2018) ;

EN61000-6-4 :2007+A1 :2011, EN IEC 61000-6-4 :2019(IEC 61000-6-4 :2018) ;

EN 61000-6-3 :2007+A1 :2011+AC :2012, EN IEC 61000-6-3 :2021(IEC 61000-6-3 :2020) ;

Standards : EN 55011 :2016+A1 :2017, EN 55011 :2016+A11 :2020, EN 55011 :2016+A2 :2021

(CISPR 11 :2015+A1 :2016+A2 :2019) ; EN 61000-3-12 :2011 (IEC 61000-3-12 :2011+A1 :2021) ;

EN 61000-3-11 :2000, EN IEC 61000-3-11 : 2019 (IEC 61000-3-11 :2017) ;

EN 61000-3-2 :2014, EN IEC 61000-3-2 :2019+A1 :2021(IEC 61000-3-2 :2018+A1 :2020) ;

EN 61000-3-3 :2013+A1 :2019, EN 61000-3-3 :2013+A2 :2021,

EN 61000-3-3 :2013+A2 :2021+AC :2022 (IEC 61000-3-3 :2013+A1 :2017+A2 :2021)

Immunity : EN 62920 :2017+A11:2020, EN 62920 :2017+A1 :2021(IEC 62920:2017+A1:2021

EN 61000-6-2 :2005+AC :2005, EN IEC 61000-6-2 :2019(IEC 61000-6-2 :2016) ;

EN61000-6-1 :2007, EN IEC 61000-6-1 :2019(IEC 61000-6-1 :2016);

(IEC 61000-4-2 :2008 ; IEC 61000-4-3 :2020 ; IEC 61000-4-4 :2012 ;

IEC 61000-4-5 :2014+A1 :2017 ; IEC 61000-4-6 :2013 ;

IEC 61000-4-8 :2009 ; IEC 61000-4-34 :2005+A1 :2009)

We, BUREAU VERITAS ADT (Shanghai) Corporation, declare that the equipment above has been tested and found compliance with the requirement limits of applicable standards. The test record, data evaluation and Equipment Under Test (EUT) configurations represented herein are true and accurate under the standards herein specified.

PREPARED BY :	Yuan Zhang Yuan ZHANG		DATE:	Dec.27, 2023
APPROVED BY :	Project Engineer	_,	DATE:	Dec.27, 2023
Construction and an operation of the operation of the	Sean YU RF Supervisor			

Report No.: BVKJ-ESH-P23121382B-1

Page 4 of 219

CE-EMC-ITE V1.1

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 91 of 101 Tel: +86 769 8998 2098 Fax: +86 769 8599 1080 Email: <u>customerservice.dg</u>@bureauveritas.com TRF No. G99/1 VER.3





Mod	lel	HESS-HY-T	HESS-HY-T	HESS-HY-T	HESS-HY-T	HESS-HY-T	
- 3	104 D/d-1	-05K	-06K	-08K	-10K	-12K	
PV input	VMaxpv [Vdc]	1100					
	Isopv [A]	30 150 - 950 200-950					
	MPP Voltage Range [Vdc]		290-850	350-850	200-950 380-850	450.050	
	Full Power MPP Voltage Range [Vdc]	250-850	290-800	20	380-800	450-850	
	Max. Input Current [A]	-					
	Start PV Voltage [Vdc]	180					
	Back feed Current [A]	4 E		0			
-	Overvoltage Category (OVC)						
	Battery voltage range[Vdc] Max. charging / discharging power[kW]			120 - 600		10	
Input	Battery voltage range@nominal	5	8	8	10	12	
ŝ	power[Vdc] Max. charging current / Max. discharging	200-600	210-600	270-600	340-600	400-600	
Ba	current [A]	30					
	Battery type	2.5		LiFePO4			
0-1000	Rated Output Voltage [Vac]		220 / 380 V,2	30 / 400 V,240	/ 415 ,3L/N/PE		
	Rated Output Frequency [Hz]			50 / 60			
5	Rated Output Power [kW]	5	6	8	10	12	
output	Max.Apparent Power [kVA]	5.5	6.6	8.8	11.0	13.2	
8	Rated Output Current [A](@400V)	7.3	8.7	11.6	14.5	17.4	
AC	Max.Output Current [A](@400V)	8.0	9.6	12.8	16.0	19.2	
	Power Factor (cosp)		1.0 (defa	ult). 0.80 lead	. 0.80 lag	36	
	Overvoltage Category (OVC)		-	III			
-	Rated Input Voltage [Vac]	2.5	220 / 380 V,2	30 / 400 V,240	/ 415 ,3L/N/PE		
nput	Rated Input Frequency [Hz]		31. X	50 / 60	Sh.	18	
AC	Max. input power from grid [kW]	10	12	16	20	24	
4	Max. input current from grid[A]	14.5	17.4	23.2	29.0	34.8	
ž	Nominal Output Voltage [Vac]		220 / 380 V,2	30 / 400 V,240	/ 415 ,3L/N/PE		
output	Nominal Output Frequency [Hz]	50 /60					
EPS	Max. apparent power[kVA]	5	6	8	10	12	
Ш.	Rated Current[A] (@400V)	7.3	8.7	11.6	14.5	17.4	
	Protective Class						
	Enclosure Protection [IP]	IP66					
	Operating Temperature Range [°C]	-25 °C +60 °C					
	Pollution degree (PD)	PD 3					
B	Max. operating altitude [m]	3000					
SYSTEM	Acoustic Noise [dB]	< 60					
	Weight [Kg]	24.5					
	Size (W / H / D) [mm]	545 / 465 / 205					
	Firmware Version	Master DSP: 610-05001-00 Stave DSP: 610-60015-00 Safety: 610-11022-00					

### **3.4 TECHNICAL DATA SHEET**

1) For European market and Australian market, the max. apparent AC output power is equal to the rated power.

Report No. BVKJ-ESH-P231213828-1

Page 11 of 219

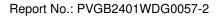
CE-EMC-ITE V1.1

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 92 of 101



Mod	del	HESS-HY-T1	HESS-HY-T1	HESS-HY-T1	HESS-HY-T1 -10K	HESS-HY-T		
- 1	VMaxpv [Vdc]	-05K	-06K	-08K 1100	-10K	-12K		
/ input	Iscpv [A]	22.		24				
	MPP Voltage Range [Vdc]	150	- 950		200-950			
	Full Power MPP Voltage Range [Vdc]	180~850V	200~850V	250~850V	320~850V	380~850V		
	Max. Input Current [A]	100-0004	200-0004	16	020-0004	000-0004		
2	Start PV Voltage [Vdc]	180						
	Back feed Current [A]	0						
	Overvoltage Category (OVC)	6 10		Ĩ				
-	Battery voltage range[Vdc]	120 - 600						
Indu	Max. charging / discharging power(kW]	5	6	8	10	12		
Battery in	Battery voltage range@nominal power[Vdc]	200-600	210-600	270-600	340-600	400-600		
Bat	Max. charging current / Max. discharging current [A]	30						
	Battery type			LiFePO4				
- 23	Rated Output Voltage [Vac]	9	220 / 380 V,2	30 / 400 V,240 /	415 ,3L/N/PE			
	Rated Output Frequency [Hz]			50 / 60				
5	Rated Output Power [kW]	5	6	8	10	12		
output	Max.Apparent Power [kVA]	5.5	6.6	8.8	11.0	13.2		
	Rated Output Current [A](@400V)	7.3	8.7	11.6	14.5	17.4		
PQ	Max.Output Current [A](@400V)	8.0	9.6	12.8	16.0	19.2		
	Power Factor (cos		1.0 (defa	ault). 0.80 lead.	0.80 lag			
- 83	Overvoltage Category (OVC)	9	820	III	41222			
14	Rated Input Voltage [Vac]		220 / 380 V,2	30 / 400 V,240 /	415 ,3L/N/PE			
Input	Rated Input Frequency [Hz]	9	9	50 / 60	(	12 - 1233X		
PQ.	Max. input power from grid [kW]	10	12	16	20	24		
<	Max. input current from grid[A]	14.5	17.4	23.2	29.0	34.8		
Set 1	Nominal Output Voltage [Vac]	220 / 380 V,230 / 400 V,240 / 415 ,3L/N/PE						
output	Nominal Output Frequency [Hz]	50 /60						
ŝ	Max. apparent power[kVA]	5	6	8	10	12		
EPS	Rated Current[A] (@400V)	11.6	14.5	11.6	14.5	17.4		
-	Protective Class							
	Enclosure Protection (IP)	IP66						
	Operating Temperature Range [°C]	-25 °C +60 °C						
	Pollution degree (PD)	PD 3						
N	Max. operating altitude [m]	3000						
STEM	Acoustic Noise [dB]	< 60						
SYS	Weight [Kg]	26						
	Size (W / H / D) [mm]	545 / 465 / 205						
		Master DSP: 610-05001-00						
	Firmware Version	Slave DSP: 610-60015-00 Safety: 610-11022-00						

1) For European market and Australian market, the max. apparent AC output power is equal to the rated power.


Report No: BVKJ-ESH-P231213828-1

Page 12 of 219

CE-EMC-ITE V1.1

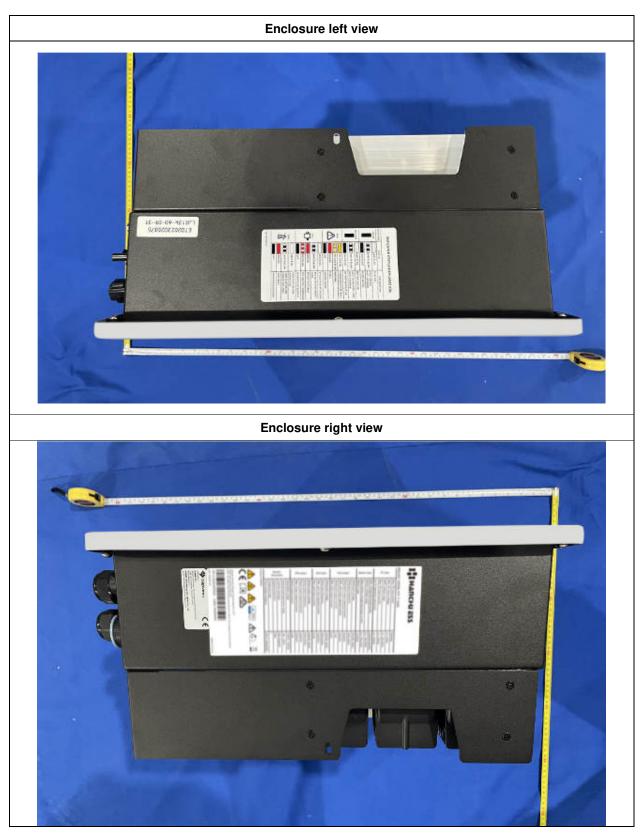
No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 93 of 101





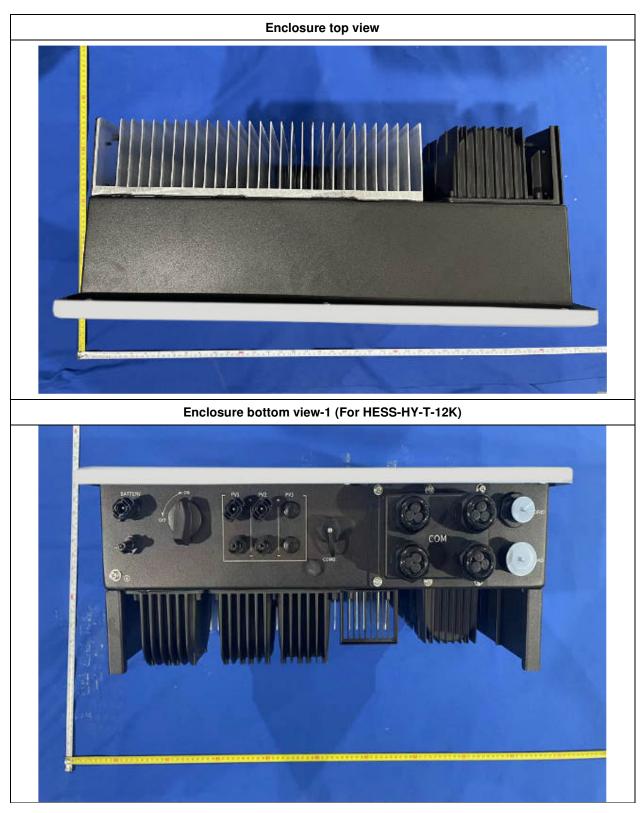


## Annex No. 2 Pictures of the unit


No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 94 of 101






Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 95 of 101 Tel: +86 769 8998 2098 Fax: +86 769 8599 1080 Email: <u>customerservice.dg</u>@bureauveritas.com TRF No. G99/1 VER.3





Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 96 of 101 Tel: +86 769 8998 2098 Fax: +86 769 8599 1080 Email: <u>customerservice.dg</u>@bureauveritas.com TRF No. G99/1 VER.3





No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 97 of 101





No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 98 of 101







Annex No. 3 Test Equipment list

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province, 523942, People's Republic of China Page 100 of 101



Equipment	Internal No.	Manufacturer	Туре	Serial No.	Next Calibration
Power Analyzer	A4080002DG	YOKOGAWA	WT3000	91M210852	Jul. 21, 2024
Power Analyser	A4080004DG	DEWESoft	SIRIUSi-HS- 4xHV-4xLV	DB19104221	Jul. 21, 2024
AC Source	A7040019DG	Chroma	61512	61512000439	
DC Simulation	A7040015DG	Chroma	62150H-1000S	62150EF00488	Monitored by Power
Power Supply	A7040016DG	Chroma	62150H-1000S	62150EF00490	Analyzer
	A7040017DG	Chroma	620028	620028EF00120	
	A7040021DG	Chroma	62150H-1000S	62150EF00609	
	A7040022DG	Chroma	62150H-1000S	62150EF00595	
RLC Load	A7150027DG	Qunling	ACLT-3803H	93VOO2869	
Current	A1060007DG	YOKOGAWA	CT200	1130700012	Jul. 16, 2024
transducer	A1060008DG	YOKOGAWA	CT200	1130700017	Jul. 16, 2024
	A1060009DG	YOKOGAWA	CT200	1130700019	Jul. 16, 2024
	A10600010DG	YOKOGAWA	CT200	1130700016	Jul. 16, 2024
	A10600011DG	YOKOGAWA	CT200	1130700011	Jul. 16, 2024
	A10600012DG	YOKOGAWA	CT200	1130700018	Jul. 16, 2024
Eight Channel Digital Phosphor Oscilloscope	A4089017DG	YOKOGAWA	DL850	91N726247	Jul. 11, 2024
Oscilloscope probe	A1490008DG	YOKOGAWA	701901	//	Jul. 18, 2024
Oscilloscope probe	A1490009DG	YOKOGAWA	701901	//	Jul. 18, 2024
Oscilloscope probe	A1490010DG	YOKOGAWA	701901	//	Jul. 18, 2024
Oscilloscope probe	A1490011DG	YOKOGAWA	701901	//	Jul. 18, 2024
Temp. & Humi. Recorder	A7440034DG	HUATO	S580-TH	HT20103923	Jan. 31, 2024

#### Date(s) of performance test: 2023-03-23 to 2023-10-23

--End of Test Report--