# Issue 1 Amendment 9 2022

Type A Power Generating Modules



## Form A2-3: Compliance Verification Report for Type A Inverter Connected Power Generating Modules

This form should be used by the **Manufacturer** to demonstrate and declare compliance with the requirements of EREC G99. The form can be used in a variety of ways as detailed below:

1. To obtain Fully Type Tested status (≤ 50 kW)

The **Manufacturer** can use this form to obtain **Fully Type Tested** status for a **Power Generating Module** by registering this completed form with the Energy Networks Association (ENA) Type Test Verification Report Register. Tests 1 - 15 must all be completed and compliant for the **Power Generating Module** to be classified as **Fully Type Tested**.

2. To obtain Type Tested status for a product

This form can be used by the **Manufacturer** to obtain **Type Tested** status for a product which is used in a **Power Generating Module** by registering this form with the relevant parts completed with the Energy Networks Association (ENA) Type Test Verification Report Register.

Where the **Manufacturer** is seeking to obtain **Type Tested** status for an **Interface Protection** device the appropriate section of Form A2-4 should be used.

## 3. One-off Installation

This form can be used by the **Manufacturer** or **Installer** to confirm that the **Power Generating Module** has been tested to satisfy all or part of the requirements of this EREC G99. This form shall be submitted to the **DNO** as part of the application.

A combination of (2) and (3) can be used as required, together with Form A2-4 where compliance of the **Interface Protection** is to be demonstrated on site.

Note:

Within this Form A2-3 the term **Power Park Module** will be used but its meaning can be interpreted within Form A2-3 to mean **Power Park Module**, **Generating Unit or Inverter** as appropriate for the context. However, note that compliance shall be demonstrated at the **Power Park Module** level.

If the **Power Generating Module** is **Fully Type Tested** and registered with the Energy Networks Association (ENA) Type Test Verification Report Register, the Installation Document (Form A3-1 or A3-2) should include the **Manufacturer's** reference number (the system reference), and this form does not need to be submitted.

Where the **Power Generating Module** is not registered with the ENA Type Test Verification Report Register or is not **Fully Type Tested** this form (all or in parts as applicable) needs to be completed and provided to the **DNO**, to confirm that the **Power Generating Module** has been tested to satisfy all or part of the requirements of this EREC G99.

| PGM tech | nnology             | TriP 20k, TriP 15k ,TriP 10k ,TriP 6k                                                                                                        |                                       |  |  |  |  |
|----------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|--|
| Manufac  | turer name          | Shenzhen Lux Powe                                                                                                                            | Shenzhen Lux Power Technology Co.,Ltd |  |  |  |  |
| Address  |                     | 5th Floor,Building 11, Phase III, Yangbei Industrial Zone,<br>Huangtian Community, Hangcheng Street, Baoan District,<br>Shenzhen City, China |                                       |  |  |  |  |
| Tel      | +86 755 8520 9056   | E-mail                                                                                                                                       | service@luxpowertek.com               |  |  |  |  |
| Web site | www.luxpowertek.com |                                                                                                                                              |                                       |  |  |  |  |
| Register | ed Capacity         |                                                                                                                                              | 20 kW                                 |  |  |  |  |

Type A

There are four options for Testing: (1) **Fully Type Tested** ( $\leq$  50 kW), (2) **Type Tested product**, (3) one-off installation, (4) tested on site at time of commissioning. The check box below indicates which tests in this Form have been completed for each of the options. With the exception of **Fully Type Tested** PGMs tests may be carried out at the time of commissioning (Form A4). Type Tested status is suitable for devices > 50 kW where the power quality aspects need consideration on a site by site basis in accordance with EREC G5 and EREC P28.

Insert reference for Manufacturers' Information including the ENA Type Test Verification Report Register system reference number where applicable:

| Tested option:                                                                                            | 1. Fully Type Tested | 2. Partially Type Tested | 3. One-off<br>Manufacturers'. Info. | 4. Tested on Site at time of<br>Commissioning |
|-----------------------------------------------------------------------------------------------------------|----------------------|--------------------------|-------------------------------------|-----------------------------------------------|
| 0. <b>Fully Type Tested</b> - all tests detailed below completed and evidence attached to this submission | yes                  | N/A                      | N/A                                 | N/A                                           |
| 1. Operating Range                                                                                        | N/A                  |                          |                                     |                                               |
| 2. PQ – Harmonics                                                                                         |                      |                          |                                     |                                               |
| 3. PQ – Voltage Fluctuation and Flicker                                                                   |                      |                          |                                     |                                               |
| 4. PQ – DC Injection (Power Park Modules only)                                                            |                      |                          |                                     |                                               |
| 5. Power Factor (PF)                                                                                      |                      |                          |                                     |                                               |
| 6. Frequency protection trip and ride through tests                                                       |                      |                          |                                     |                                               |
| 7. Voltage protection trip and ride through tests                                                         |                      |                          |                                     |                                               |
| 8. Protection – Loss of Mains Test, Vector Shift and RoCoF<br>Stability Test                              |                      |                          |                                     |                                               |
| 9. LFSM-O Test                                                                                            |                      |                          |                                     |                                               |
| 10. Protection – Reconnection Timer                                                                       |                      |                          |                                     |                                               |

# G99 Type A



# Issue 1 Amendment 9 2022

Type A Power Generating Modules

There are four options for Testing: (1) **Fully Type Tested**, (2) Partially **Type Tested**, (3) one-off installation, (4) tested on site at time of commissioning. The check box below indicates which tests in this Form have been completed for each of the options. With the exception of **Fully Type Tested PGM**s tests may be carried out at the time of commissioning (Form A4).

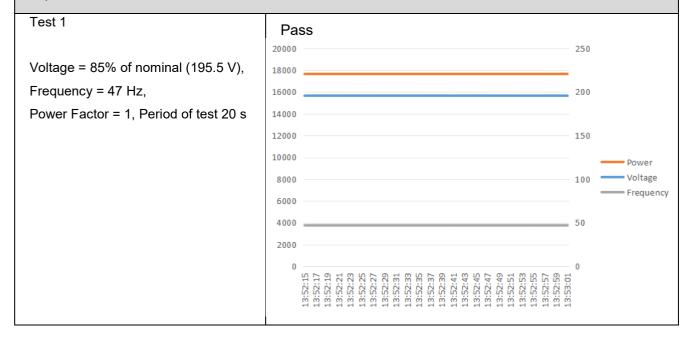
Insert Document reference(s) for Manufacturers' Information

| Tested option:                                                                                                                                          | 1. 6               | Fully Type Tested | 2. Partially Type Tested | 3. One-off<br>Manufacturers'. Info. | 4. Tested on Site at time of<br>Commissioning |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|--------------------------|-------------------------------------|-----------------------------------------------|--|--|
| 11. Fault Level contribution                                                                                                                            |                    |                   |                          |                                     |                                               |  |  |
| 12. Self-monitoring Solid State Switch                                                                                                                  |                    |                   |                          |                                     |                                               |  |  |
| 13. Wiring functional tests if required by para 15 relevant schedule of tests)                                                                          | 5.2.1 (attach      |                   |                          |                                     |                                               |  |  |
| 14. Logic Interface (input port)                                                                                                                        |                    |                   |                          |                                     |                                               |  |  |
| 15. Cyber security                                                                                                                                      |                    |                   |                          |                                     |                                               |  |  |
|                                                                                                                                                         |                    |                   |                          |                                     |                                               |  |  |
| <b>Manufacturer</b> compliance declaration I certif<br>manufactured and tested to ensure that they per<br>product meets all the requirements of EREC G9 | rform as stated in |                   |                          |                                     |                                               |  |  |
| Signed James Wang O                                                                                                                                     | n behalf of        | Shenzhen Lux Pow  | ver Technology Co.,Ltd   |                                     |                                               |  |  |
| Note that testing can be done by the Manufacturer of an individual component or by an external test house.                                              |                    |                   |                          |                                     |                                               |  |  |
| Where parts of the testing are carried out by per records and results supplied to them to verify the                                                    |                    |                   |                          |                                     |                                               |  |  |

# A2-3 Compliance Verification Report –Tests for Type A Inverter Connected Power Generating Modules – test record

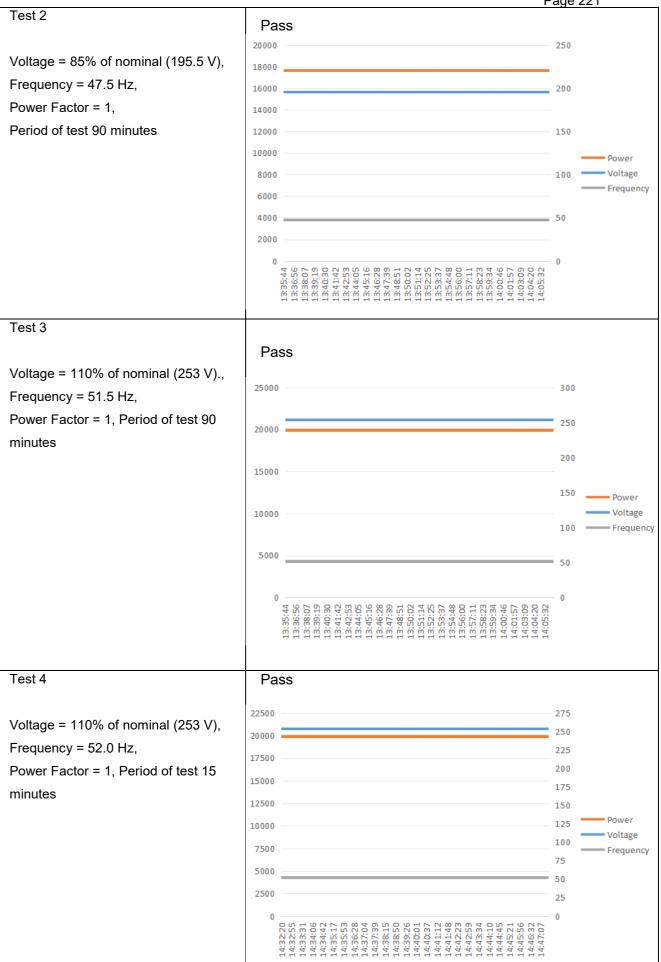
**1. Operating Range:** Tests should be carried with the **Power Generating Module** operating at **Registered Capacity** and connected to a suitable test supply or grid simulation set. The power supplied by the primary source shall be kept stable within  $\pm 5$  % of the apparent power value set for the entire duration of each test sequence.

Frequency, voltage and **Active Power** measurements at the output terminals of the **Power Generating Module** shall be recorded every second. The tests will verify that the **Power Generating Module** can operate within the required ranges for the specified period of time.


The Interface Protection shall be disabled during the tests.

In case of a PV **Power Park Module** the PV primary source may be replaced by a DC source.

In case of a full converter **Power Park Module** (eg wind) the primary source and the prime mover Inverter/rectifier may be replaced by a DC source.


Pass or failure of the test should be indicated in the fields below (right hand side), for example with the statement "Pass", "No disconnection occurs", etc. Graphical evidence is preferred.

Note that the value of voltage stated in brackets assumes a **LV** connection. This should be adjusted for **HV** as required.



# Туре А

#### ENA Engineering Recommendation G99 Issue 1 Amendment 8 2021 Page 221



## ENA Engineering Recommendation G99 Issue 1 Amendment 9 2022 Page 222

| Test 5                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|                                         | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |
| Voltage = 100% of nominal (230 V),      | 22500250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )       |
| Frequency = 50.0 Hz,                    | 20000 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | i       |
| Power Factor = 1, Period of test 90     | 17500 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )       |
| minutes                                 | 15000175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | j       |
|                                         | 12500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )       |
|                                         | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Power   |
|                                         | 7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Voltage |
|                                         | 5000 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . ,     |
|                                         | 2500 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
|                                         | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |
|                                         | 16:35:00<br>16:35:00<br>16:36:00<br>16:38:00<br>16:43:00<br>16:43:00<br>16:43:00<br>16:44:00<br>16:44:00<br>16:44:00<br>16:47:00<br>16:47:00<br>16:55:00<br>16:55:00<br>16:55:00<br>16:55:00<br>16:55:00<br>16:55:00<br>16:55:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>17:00:00<br>11:00:00<br>11:00:00<br>11:00:00<br>11:00:00<br>11:00:00<br>11:00:00<br>11:00:00<br>11:00:00<br>11:00:00<br>11:00:00<br>11:00:00<br>11:00:00<br>11:00:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11:00<br>11: |         |
|                                         | 16:3<br>16:3<br>16:3<br>16:4<br>16:4<br>16:4<br>16:4<br>16:4<br>16:4<br>16:4<br>16:4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
| Test 6 RoCoF withstand                  | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |
|                                         | power frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |
| Confirm that the Power Generating       | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51.50   |
| Module is capable of staying connected  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51.00   |
| to the Distribution Network and operate | 15000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50.50   |
| at rates of change of frequency up to 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50.00   |
| Hzs-1 as measured over a period of      | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49.50   |
| 500 ms. Note that this is not expected  | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 49.00   |
| to be demonstrated on site.             | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 48.50   |
|                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48.00   |
|                                         | 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5<br>Time (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7       |
|                                         | 1111e (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |

Туре А

## 2. Power Quality – Harmonics:

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) the test requirements are specified in Annex A.7.1.5. These tests should be carried out as specified in BS EN 61000-3-12 The results need to comply with the limits of Table 2 of BS EN 61000-3-12 for single phase equipment and Table 3 of BS EN 610000-3-12 for three phase equipment.

For **Power Generating Modules** of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation shall be designed in accordance with EREC G5.

Power Generating Module tested to BS EN 61000-3-12

| per phase (rpp) 6.67 Value (A) x 23/rating per phase (kVA) | <b>Power Generating Module</b> rating per phase (rpp) | 6.67 | kVA | ( ) |
|------------------------------------------------------------|-------------------------------------------------------|------|-----|-----|
|------------------------------------------------------------|-------------------------------------------------------|------|-----|-----|

## Average harmonic current results - Phase 1

| Harmonic                                         | At 45-55% of <b>Registered</b>  |                              | 100% of <b>Registered Ca</b> | pacity      | Limit in BS     | S EN 61000-3-12 |
|--------------------------------------------------|---------------------------------|------------------------------|------------------------------|-------------|-----------------|-----------------|
|                                                  | Measured<br>Value MV in<br>Amps | %                            | Measured Value MV in<br>Amps | %           | 1 phase         | 3 phase         |
| 2                                                | 0.052                           | 0.179                        | 0.07                         | 0.241       | 8%              | 8%              |
| 3                                                | 0.05                            | 0.172                        | 0.063                        | 0.217       | 21.60%          | Not stated      |
| 4                                                | 0.005                           | 0.017                        | 0.005                        | 0.017       | 4%              | 4%              |
| 5                                                | 0.044                           | 0.152                        | 0.056                        | 0.193       | 10.70%          | 10.70%          |
| 6                                                | 0.003                           | 0.01                         | <b>0.003</b> 0.01            |             | 2.67%           | 2.67%           |
| 7                                                | 0.052                           | 0.179                        | 6.10%                        | 0.21        | 7.20%           | 7.20%           |
| 8                                                | 0.003                           | 0.01                         | 0.30%                        | 0.01        | 2%              | 2%              |
| 9                                                | 0.04                            | 0.138                        | 0.051                        | 0.176       | 3.80%           | Not stated      |
| 10                                               | 0.003                           | 0.01                         | 0.30%                        | 0.01        | 1.60%           | 1.60%           |
| 11                                               | 0.028                           | 0.097                        | 1.20%                        | 0.041       | 3.10%           | 3.10%           |
| 12                                               | 0.003                           | 0.01                         | 0.20%                        | 0.007       | 1.33%           | 1.33%           |
| 13                                               | 0.047                           | 0.162                        | 7.00%                        | 0.241       | 2%              | 2%              |
| THD <sup>17</sup>                                | -                               | 1.070%                       | -                            | 0.73%       | 23%             | 13%             |
| PWHD <sup>18</sup>                               | -                               | 0.023%                       | -                            | 0.021%      | 23%             | 22%             |
| Average ha                                       | armonic curre                   | nt results -                 | Phase 2                      |             | ·               |                 |
| Harmonic At 45-55% of <b>Registered Capacity</b> |                                 | 100% of <b>Registered Ca</b> | pacity                       | Limit in BS | S EN 61000-3-12 |                 |

## ENA Engineering Recommendation G99 Issue 1 Amendment 9 2022 Page 224

|                    | Measured<br>Value MV in | %     | Measured Value MV in<br>Amps | %              | 1 phase | 3 phase    |
|--------------------|-------------------------|-------|------------------------------|----------------|---------|------------|
| 2                  | 0.05                    | 0.172 | 0.069                        | 0.238          | 8%      | 8%         |
| 3                  | 0.005                   | 0.017 | 0.005                        | 0.017          | 21.60%  | Not stated |
| 4                  | 0.003                   | 0.01  | 0.004                        | 0.014          | 4%      | 4%         |
| 5                  | 0.006                   | 0.021 | 0.007                        | 0.024          | 10.70%  | 10.70%     |
| 6                  | 0.003                   | 0.01  | 0.003                        | 003 0.01 2.67% |         | 2.67%      |
| 7                  | 0.007                   | 0.024 | 0.70%                        | 0% 2.40% 7.20% |         | 7.20%      |
| 8                  | 0.003                   | 0.01  | 0.30%                        | 1.00%          | 2%      | 2%         |
| 9                  | 0.004                   | 0.014 | 0.004                        | 0.014          | 3.80%   | Not stated |
| 10                 | 0.003                   | 0.01  | 0.003                        | 1.00%          | 1.60%   | 1.60%      |
| 11                 | 0.025                   | 0.086 | 0.037                        | 12.80%         | 3.10%   | 3.10%      |
| 12                 | 0.002                   | 0.007 | 0.002                        | 0.70%          | 1.33%   | 1.33%      |
| 13                 | 0.023                   | 0.079 | 0.035                        | 12.10%         | 2%      | 2%         |
| THD17              | -                       | 0.59% | -                            | 0.49%          | 23%     | 13%        |
| PWHD <sup>18</sup> | -                       | 0.02% | -                            | 0.019%         | 23%     | 22%        |

| Average harmonic current results – Phase 3 |                                              |       |                              |        |             |                           |  |  |
|--------------------------------------------|----------------------------------------------|-------|------------------------------|--------|-------------|---------------------------|--|--|
| Harmonic                                   | onic At 45-55% of <b>Registered Capacity</b> |       | 100% of <b>Registered Ca</b> | pacity | Limit in BS | Limit in BS EN 61000-3-12 |  |  |
|                                            | Measured<br>Value MV in                      | %     | Measured Value MV in<br>Amps | × ×    |             | 3 phase                   |  |  |
| 2                                          | 0.049                                        | 0.169 | 0.067                        | 0.231  | 8%          | 8%                        |  |  |
| 3                                          | 0.003                                        | 0.01  | 0.004                        | 0.014  | 21.60%      | Not stated                |  |  |
| 4                                          | 0.004                                        | 0.014 | 0.004                        | 0.014  | 4%          | 4%                        |  |  |
| 5                                          | 0.008                                        | 0.028 | 0.011                        | 0.038  | 10.70%      | 10.70%                    |  |  |
| 6                                          | 0.003                                        | 0.01  | 0.002                        | 0.007  | 2.67%       | 2.67%                     |  |  |
| 7                                          | 0.007                                        | 0.024 | 0.009                        | 0.031  | 7.20%       | 7.20%                     |  |  |
| 8                                          | 0.003                                        | 0.01  | 0.002                        | 0.007  | 2%          | 2%                        |  |  |
| 9                                          | 0.003                                        | 0.01  | 0.005                        | 0.017  | 3.80%       | Not stated                |  |  |
| 10                                         | 0.003                                        | 0.01  | 0.002                        | 0.007  | 1.60%       | 1.60%                     |  |  |
| 11                                         | 0.029                                        | 0.1   | 0.041                        | 0.141  | 3.10%       | 3.10%                     |  |  |
| 12                                         | 0.002                                        | 0.007 | 0.002                        | 0.007  | 1.33%       | 1.33%                     |  |  |

Туре А

# ENA Engineering Recommendation G99 Issue 1 Amendment 8 2021 Page 225

| 13                 | 0.026 | 0.09   | 0.04 | 0.138  | 2%  | 2%  |
|--------------------|-------|--------|------|--------|-----|-----|
| THD <sup>17</sup>  | -     | 0.24%  | -    | 0.41%  | 23% | 13% |
| PWHD <sup>18</sup> | -     | 0.018% | -    | 0.017% | 23% | 22% |

<sup>17</sup> THD = Total Harmonic Distortion

<sup>18</sup> PWHD = Partial Weighted Harmonic Distortion

#### 3. Power Quality – Voltage fluctuations and Flicker:

For **Power Generating Modules of Registered Capacity** of less than 75 A per phase (ie 50 kW) these tests should be undertaken in accordance with Annex A.7.1.4.3. Results should be normalised to a standard source impedance, or if this results in figures above the limits set in BS EN 61000-3-11 to a suitable Maximum Impedance. For **Power Generating Modules of Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation shall be designed in accordance with EREC P28.

The standard test impedance is  $0.4 \Omega$  for a single phase **Power Generating Module** (and for a two phase unit in a three phase system) and  $0.24 \Omega$  for a three phase **Power Generating Module** (and for a two phase unit in a split phase system). Please ensure that both test and standard impedance are completed on this form. If the test impedance (or the measured impedance) is different to the standard impedance, it must be normalised to the standard impedance as follows (where the **Power Factor** of the generation output is 0.98 or above): d max normalised value = (Standard impedance / Measured impedance) x Measured value.

Where the **Power Factor** of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the standard impedance.

The stopping test should be a trip from full load operation.

The duration of these tests needs to comply with the particular requirements set out in the testing notes for the technology under test.

The test date and location must be declared.

| Test start<br>date                                | 2 <sup>nd</sup> ( | of August     | 2023    |        | Test end     | date       | 2 <sup>nd</sup> of August 2023 |                 |       | 2023     |
|---------------------------------------------------|-------------------|---------------|---------|--------|--------------|------------|--------------------------------|-----------------|-------|----------|
| Test location                                     | Luxpo             | ower Testir   | ng labo | oratoi | ry &Intertek | Testing Se | ervices Sher                   | nzhen Ltd. Guan | gzhou | u Branch |
|                                                   | Starting          |               |         |        | Stopping     |            |                                | Running         |       |          |
|                                                   | d max             | dc            | d(t)    |        | d max        | dc         | d(t)                           | P st            | P lt  | 2 hours  |
| Measured<br>Values at<br>test<br>impedance        | 0.43%             | 0.35%         | 0°      | %      | 0.47%        | 0.41%      | 0%                             | 0.1             |       | 0.09     |
| Normalised<br>to standard<br>impedance            | 0.43%             | 0.35%         | 0%      |        | 0.47%        | 0.41%      | 0%                             | 0.1             |       | 0.09     |
| Normalised<br>to required<br>maximum<br>impedance | 0.43%             | 0.35%         | 0%      |        | 0.47%        | 0.41%      | 0%                             | 0.1             |       | 0.09     |
| Limits set<br>under BS<br>EN 61000-3-<br>11       | 4%                | 3.30%         | 3.30%   |        | 4%           | 3.30%      | 3.30%                          | 1               |       | 0.65     |
|                                                   |                   |               |         |        |              |            |                                |                 |       |          |
| Test<br>Impedance                                 | R                 | 0.24          |         |        | Ω            | XI         |                                | 0.15            |       | Ω        |
| Standard<br>Impedance                             | R                 | 0.24<br>0.4 ^ |         |        | Ω            | XI         | 0.15 *<br>0.25 ^               |                 | Ω     |          |

Туре А

# ENA Engineering Recommendation G99 Issue 1 Amendment 8 2021 Page 227

|                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                             |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                         | i age zzi                                                                                                                                                                                                                                                                       | 1               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Maximum<br>Impedance                                                                                                                                                                                                                                                                             | R                                                                                                                                                                                           | 0.24                                                                                                                                                                                                                                                | Ω                                                                                                                                                                                                          | XI                                                                                                                      | 0.15                                                                                                                                                                                                                                                                            | Ω               |
| <ul> <li>Applies to s         on a three ph         For voltage cl         values to the         Normalised v         Single phase         Two phase u         Two phase u         Three phase         Where the Pc         close to that c         The stopping         The duration</li> </ul> | ingle phas<br>ase syster<br>hange and<br>normalised<br>alue = Mea<br>units refer<br>hits in a thr<br>hits in a sp<br>units refer<br>ower Facto<br>of the Stan<br>test should<br>of these te | e <b>Power Genera</b><br>n<br>flicker measuren<br>d values where th<br>asured value x rei<br>ence source resis<br>ree phase system<br>lit phase system<br>ence source resis<br><b>or</b> of the output is<br>dard Impedance.<br>d be a trip from fu | the followin<br>the <b>Power Factor</b><br>ference source re-<br>stance is $0.4 \Omega$<br>to reference source<br>reference source<br>stance is $0.24 \Omega$<br>to under 0.98 then<br>all load operation. | I Power Ge<br>g formula is<br>of the gene<br>esistance/me<br>e resistance<br>resistance<br>the XI to R<br>ular requirer | merating Modules using two phases<br>to be used to convert the measured<br>eration output is 0.98 or above.<br>easured source resistance at test po-<br>e is 0.4 $\Omega$<br>is 0.24 $\Omega$<br>ratio of the test impedance should b<br>ments set out in the testing notes for | d<br>pint<br>pe |
|                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                             |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                         |                                                                                                                                                                                                                                                                                 |                 |

| be carried     | out at three de   | fined | d power lev       | vels ±5%. At 23       | 0 V a 50      | kW   | / three phase <b>Inv</b> | erating Unit. Tests are to<br>erter has a current output<br>h AnnexA.7.1.4.4. |  |
|----------------|-------------------|-------|-------------------|-----------------------|---------------|------|--------------------------|-------------------------------------------------------------------------------|--|
| Test powe      | er level          |       |                   | 10%                   |               |      | 55%                      | 100%                                                                          |  |
| Recorded       | value in Amps     |       |                   | 0.029                 |               |      | 0.032                    | 0.027                                                                         |  |
| as % of ra     | ted AC current    |       |                   | 0.1%                  |               |      | 0.11%                    | 0.09%                                                                         |  |
| Limit          |                   |       |                   | 0.25%                 |               |      | 0.25%                    | 0.25%                                                                         |  |
| carried ou     | t at three volta  | ge le | vels and a        | t <b>Registered C</b> | apacity.      | Vo   |                          | <b>Module</b> . Tests are to be ained within ±1.5% of the nex A.7.1.4.2.      |  |
| Voltage        |                   |       | 0.94 pu (216.2 V) |                       |               |      | pu (230 V)               | 1.1 pu (253 V)                                                                |  |
| Measured       | value             |       | 0.9992            |                       |               |      | 9995                     | 0.9992                                                                        |  |
| Power Fa       | <b>ctor</b> Limit |       | >0.95             |                       |               | >(   | >0.95 >0.95              |                                                                               |  |
| 6. Protect     | tion – Frequer    | cy te | ests: Thes        | e tests should l      | pe carrie     | d oı | ut in accordance         | with the Annex A.7.1.2.3.                                                     |  |
| Function       | Setting           |       |                   | Trip test             |               |      | "No trip tests"          |                                                                               |  |
|                | Frequency         | Tin   | ne delay          | Frequency             | Time<br>delay |      | Frequency<br>/time       | Confirm no trip                                                               |  |
| U/F<br>stage 1 | 47.5 Hz           | 20    | S                 | 47.49 Hz              | 20.13s        |      | 47.7 Hz 30 s             | No trip                                                                       |  |
| U/F<br>stage 2 | 47 Hz             | 0.5   | s 46.99 Hz        |                       | 0.525s        |      | 47.2 Hz<br>19.5 s        | No trip                                                                       |  |
|                |                   |       |                   |                       |               |      | 46.8 Hz<br>0.45 s        | No trip                                                                       |  |

## ENA Engineering Recommendation G99 Issue 1 Amendment 8 2021 Page 229

| O/F | 52 Hz | 0.5 s | 52.01<br>Hz | 0.579s | 51.8 Hz<br>120.0 s | No trip |
|-----|-------|-------|-------------|--------|--------------------|---------|
|     |       |       |             |        | 52.2 Hz<br>0.45 s  | No trip |

Note. For frequency trip tests the frequency required to trip is the setting  $\pm 0.1$  Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting  $\pm 0.2$  Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

7. Protection – Voltage tests: These tests should be carried out in accordance with Annex A.7.1.2.2.

| Function       | Setting           |               | Trip test |               | "No trip tests"   |                 |
|----------------|-------------------|---------------|-----------|---------------|-------------------|-----------------|
|                | Voltage           | Time<br>delay | Voltage   | Time<br>delay | Voltage /time     | Confirm no trip |
| U/V            | 0.8 pu (184 V)    | 2.5 s         | 183.4 V   | 2.59 s        | 188 V<br>5.0 s    | No trip         |
|                |                   |               |           |               | 180 V<br>2.45 s   | No trip         |
| O/V<br>stage 1 | 1.14 pu (262.2 V) | 1.0 s         | 262.7V    | 1.05s         | 258.2 V<br>5.0 s  | No trip         |
| O/V<br>stage 2 | 1.19 pu (273.7 V) | 0.5 s         | 274.1V    | 0.56s         | 269.7 ∨<br>0.95 s | No trip         |
|                |                   |               |           |               | 277.7 V<br>0.45 s | No trip         |

Note for Voltage tests the Voltage required to trip is the setting  $\pm 3.45$  V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting  $\pm 4$  V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

**8.Protection – Loss of Mains test:** These tests should be carried out in accordance with BS EN 62116. Annex A.7.1.2.4.

The following sub set of tests should be recorded in the following table.

| Test Power and imbalance    | 33%<br>-5% Q | 66%<br>-5% Q | 100%<br>-5% P | 33%<br>+5% Q | 66%<br>+5% Q | 100%<br>+5% P |
|-----------------------------|--------------|--------------|---------------|--------------|--------------|---------------|
| Inibalaneo                  | Test 22      | Test 12      | Test 5        | Test 31      | Test 21      | Test 10       |
| Trip time. Limit<br>is 0.5s | 0.217s       | 0.245s       | 0.262s        | 0.246s       | 0.311s       | 0.24s         |

**Loss of Mains Protection, Vector Shift Stability test.** This test should be carried out in accordance with Annex A.7.1.2.6.

| Start Frequency | Change | Confirm no trip |
|-----------------|--------|-----------------|
|                 |        |                 |

| Positive Vector<br>Shift                                                                                                                                                                                                                                                                    | 49.5 H z                                                                                                                                     | +50 degrees         | No trip                      |                          |                          |                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------|--------------------------|--------------------------|--------------------------|
| Negative Vector<br>Shift                                                                                                                                                                                                                                                                    | 50.5 H z                                                                                                                                     | - 50 degrees        | No trip                      |                          |                          |                          |
| Loss of Mains P<br>A.7.1.2.6.                                                                                                                                                                                                                                                               | rotection, RoCoF                                                                                                                             | Stability test: Thi | s test sho                   | uld be carried out in ac | ccorda                   | nce with Annex           |
| Ramp range                                                                                                                                                                                                                                                                                  | Test frequency ra                                                                                                                            | amp:                | Test Du                      | ration                   |                          | Confirm no trip          |
| 49.0 Hz to<br>51.0 Hz                                                                                                                                                                                                                                                                       | +0.95 Hzs-1                                                                                                                                  |                     | 2.1 s                        |                          |                          | No trip                  |
| 51.0 Hz to<br>49.0 Hz                                                                                                                                                                                                                                                                       | -0.95 Hzs-1                                                                                                                                  |                     | 2.1 s                        |                          |                          | No trip                  |
| <b>9. Limited Frequency Sensitive Mode – Over frequency test:</b> The test should be carried out using the specific threshold frequency of 50.4 Hz and <b>Droop</b> of 10%. This test should be carried out in accordance with Annex A.7.1.3 which also contains the measurement tolerances |                                                                                                                                              |                     |                              |                          |                          |                          |
|                                                                                                                                                                                                                                                                                             | <b>Pe Power</b> response to rising frequency/time plots are attached if frequency ion tests are undertaken in accordance with Annex A.7.2.4. |                     |                              |                          | Yes                      |                          |
| Alternatively, test results should be noted below:                                                                                                                                                                                                                                          |                                                                                                                                              |                     |                              |                          |                          |                          |
| Test sequence<br>at <b>Registered</b><br><b>Capacity</b> >80%                                                                                                                                                                                                                               | Measured Activ<br>Power Output                                                                                                               | e Frequency         |                              | Primary Power Source     |                          | Active Power<br>Gradient |
| Step a) 50.00Hz<br>±0.01Hz                                                                                                                                                                                                                                                                  | 20039 W                                                                                                                                      | 50.00               | Hz                           |                          |                          | -                        |
| Step b) 50.45Hz<br>±0.05Hz                                                                                                                                                                                                                                                                  | 19807 W                                                                                                                                      | 50.45               | Hz                           |                          |                          | -                        |
| Step c) 50.70Hz<br>±0.10Hz                                                                                                                                                                                                                                                                  | 18795W                                                                                                                                       | 50.70               | Hz                           | _                        |                          | -                        |
| Step d) 51.15Hz<br>±0.05Hz                                                                                                                                                                                                                                                                  | 16995W                                                                                                                                       | 51.15               | Hz                           | lz 20415 W               |                          | -                        |
| Step e) 50.70Hz<br>±0.10Hz                                                                                                                                                                                                                                                                  | 18789 W                                                                                                                                      | 50.70               |                              |                          | -                        |                          |
| Step f) 50.45Hz<br>±0.05Hz                                                                                                                                                                                                                                                                  | 19816 W                                                                                                                                      | 50.45               | <br>Hz                       |                          | -                        |                          |
| Step g) 50.00Hz<br>±0.01Hz                                                                                                                                                                                                                                                                  | 20022 W                                                                                                                                      | 50.00               | Hz                           |                          |                          |                          |
| Test sequence<br>at <b>Registered</b><br><b>Capacity</b> 40% -<br>60%                                                                                                                                                                                                                       | Measured <b>Activ</b><br><b>Power</b> Output                                                                                                 | e Freque            | ency Primary Power<br>Source |                          | Active Power<br>Gradient |                          |

## ENA Engineering Recommendation G99 Issue 1 Amendment 8 2021 Page 231

| Step a) 50.00Hz<br>±0.01Hz            | 10027 W | 50.00Hz |         | - |  |  |
|---------------------------------------|---------|---------|---------|---|--|--|
| Step b) 50.45Hz<br>±0.05Hz            | 9805 W  | 50.45Hz |         | - |  |  |
| Step c) 50.70Hz<br>±0.10Hz            | 8813 W  | 50.70Hz |         | - |  |  |
| Step d) 51.15Hz<br>±0.05Hz            | 7012 W  | 51.15Hz | 10371 W | - |  |  |
| Step e) 50.70Hz<br>±0.10Hz            | 8815 W  | 50.70Hz |         | - |  |  |
| Step f) 50.45Hz<br>±0.05Hz            | 9808 W  | 50.45Hz |         |   |  |  |
| Step g) 50.00Hz<br>±0.01Hz            | 10018 W | 50.00Hz |         |   |  |  |
| 10. Protection – Re-connection timer. |         |         |         |   |  |  |

Test should prove that the reconnection sequence starts after a minimum delay of 20 s for restoration of voltage and frequency to within the stage 1 settings of Table 10.1. Both the time delay setting and the measured delay should be provided in this form; both should be greater than 20 s to pass. Confirmation should be provided that the Power Generating Module does not reconnect at the voltage and frequency settings below; a statement of "no reconnection" can be made.

| Time delay<br>setting                                                            | Measured delay | Checks on no reconnection when voltage or frequency is brought to just outside stage 1 limits of Table 10.1. |                                                                                                    |                 |            |
|----------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------|------------|
| 25s                                                                              | 30s            | At 1.16 pu (266.2 V<br>LV connection, 127.6<br>V HV connection<br>assuming 110 V ph-<br>ph VT)               | At 0.78 pu<br>(180.0 V LV<br>connection,<br>85.8 V HV<br>connection<br>assuming 110<br>V ph-ph VT) | At 47.4 Hz      | At 52.1 Hz |
| Confirmation that the <b>Power</b><br>Generating Module does not re-<br>connect. |                | No reconnection No reconnection No reconnection No reconnection                                              |                                                                                                    | No reconnection |            |

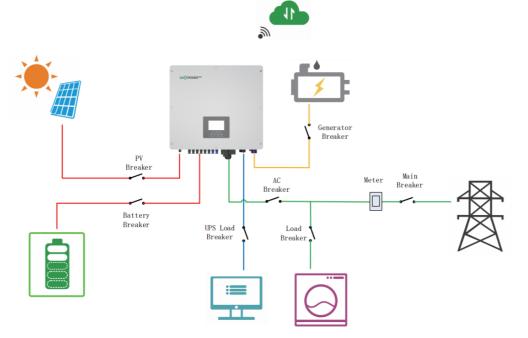
## 11. Fault level contribution: These tests shall be carried out in accordance with EREC G99 Annex A.7.1.5.

## For **Inverter** output

| Time after fault | Volts | Amps       |
|------------------|-------|------------|
| 20ms             | 102   | 25.2       |
| 100ms            | 89.8  | 13         |
| 250ms            | 59.3  | 0.8        |
| 500ms            | 0     | 0          |
| Time to trip     | 0.159 | In seconds |

| 12. Self-Monitoring solid state switching: No specified test requirements. Refer to Annex A.7                                                                                                                                                                                                                                                                                                                  | .1.7.                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| It has been verified that in the event of the solid state switching device failing to disconnect the <b>Power Park Module</b> , the voltage on the output side of the switching device is reduced to a value below 50 volts within 0.5 s.                                                                                                                                                                      | NA                     |
| <b>13. Wiring functional tests:</b> If required by para 15.2.1.                                                                                                                                                                                                                                                                                                                                                |                        |
| Confirm that the relevant test schedule is attached (tests to be undertaken at time of commissioning)                                                                                                                                                                                                                                                                                                          | NA                     |
| 14. Logic interface (input port).                                                                                                                                                                                                                                                                                                                                                                              |                        |
| Confirm that an input port is provided and can be used to shut down the module.                                                                                                                                                                                                                                                                                                                                | Yes                    |
| Provide high level description of logic interface, e.g. details in 11.1.3.1 such as AC or DC signal (the additional comments box below can be used)                                                                                                                                                                                                                                                            | Yes                    |
| 15. Cyber security                                                                                                                                                                                                                                                                                                                                                                                             |                        |
| Confirm that the <b>Power Generating Module</b> has been designed to comply with cyber security requirements, as detailed in 9.1.8.                                                                                                                                                                                                                                                                            | Yes                    |
| Please see the attached Manufacturer's Cyber security statement as below .                                                                                                                                                                                                                                                                                                                                     |                        |
| Additional comments.                                                                                                                                                                                                                                                                                                                                                                                           |                        |
| This equipment is equipped with RJ45 terminal and WifFi dongle connection for logic interface to received the signal from the DNO, the connection should be installed per installation manual, ar should be a simple binary output that captured by RJ45 terminal (PIN 1 and 2 for detecting the source the signal actived, the inverter will reduce its active power to zero within 5s, or shut down with 1s. | nd the signal signal). |

# Manufacturer's Statement in accordance with the


requirements of G98-Amd. 7 standard Sec.s 9.7 , and G99-Amd. 9 standard Sec.s 9.1.8 regarding "Cyber Security"

James Wang

Signature : Position : CEO

Shenzhen Lux Power Technology Co.,Ltd hereby declares the following:

1)The Shenzhen Lux Power Technology Co.,Ltd company's inverters include a system of internal and external logic communications as summarized in the following scheme:



where the main components involved and their main functions are explained in the following table:

| Name       | Meaning                       | Function                                                                                                                                          | Location           |
|------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| PMS        | Power<br>Management<br>System | monitoring and management of<br>power fluxes through the<br>inverter,execution of local logic<br>functions depending on grid<br>parameters values | Inverter           |
| Monitoring | WIFI/GPRS                     | Monitoring device to realize remote monitoring function                                                                                           | Monitoring device  |
| Router     | Router device                 | transmission of data to cloud<br>server,reception of<br>commands/settings from<br>external stakeholder                                            | Third-party device |
| Meter      | External Power<br>Meter       | meter at the AC input site, and<br>Possible meter at AC port of<br>third party inverter, for power<br>measures                                    | Third-party device |

and the subjects/parties involved in communications with the Luxpowertek inverters are listed in the following table, together with the purposes of the respective communications:

| Subject  | Meaning                                 | Operations                                                                     |
|----------|-----------------------------------------|--------------------------------------------------------------------------------|
| End-user | mobile device(App),<br>PC ( web portal) | monitoring of historical data, settings for special functions                  |
| Service  | PC (via web portal)                     | remote diagnosis, system behaviour monitoring, remote updates, remote settings |

2) All communications between internal components of the inverter, and supplied External Power Meter(s), take place via appropriate serial lines (RS485, CANBUS).

3) The only communication port between the inverter and the outside is constituted by the monitoring device on the system; the communication between inverter and the outside world can take place via an Ethernet line, WiFi or GPRS router according to the customer's request.

4) All communications between the Web server and the subjects/parties are Cyber-security by SSL technology.

5) The cyber-security assessment of the Luxpowertek was performed according to the ETSI EN 303 645 standard, and it is reported according to the Table B.1 form of the same standard:

| EN 303 645 v2.1.1 (2020-0          | EN 303 645 v2.1.1 (2020-06) Table B.1: Implementation of provisions for consumer IoT security |         |                                                                                                                                                                                               |  |  |  |
|------------------------------------|-----------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Clause number and title            |                                                                                               |         |                                                                                                                                                                                               |  |  |  |
| Reference                          | Status                                                                                        | Support | Detail                                                                                                                                                                                        |  |  |  |
| 5.1 No universal default passwords |                                                                                               |         |                                                                                                                                                                                               |  |  |  |
| Provision 5.1-1                    | M C (1)                                                                                       | N/A     | There is no default passwords for end users                                                                                                                                                   |  |  |  |
| Provision 5.1-2                    | M C (1)                                                                                       | N/A     |                                                                                                                                                                                               |  |  |  |
| Provision 5.1-3                    | М                                                                                             | N/A     |                                                                                                                                                                                               |  |  |  |
| Provision 5.1-4                    | M C (8)                                                                                       | N/A     |                                                                                                                                                                                               |  |  |  |
| Provision 5.1-5                    | M C (5)                                                                                       | N/A     |                                                                                                                                                                                               |  |  |  |
| 5.2 Implement a means to           | 5.2 Implement a means to manage reports of vulnerabilities                                    |         |                                                                                                                                                                                               |  |  |  |
| Provision 5.2-1                    | М                                                                                             | Y       |                                                                                                                                                                                               |  |  |  |
| Provision 5.2-2                    | R                                                                                             | Y       |                                                                                                                                                                                               |  |  |  |
| Provision 5.2-3                    | R                                                                                             | Y       |                                                                                                                                                                                               |  |  |  |
| 5.3 Keep software update           | d                                                                                             |         |                                                                                                                                                                                               |  |  |  |
| Provision 5.3-1                    | R                                                                                             | Y       |                                                                                                                                                                                               |  |  |  |
| Provision 5.3-2                    | MC (5)                                                                                        | Y       |                                                                                                                                                                                               |  |  |  |
| Provision 5.3-3                    | MC (12)                                                                                       | N/A     |                                                                                                                                                                                               |  |  |  |
| Provision 5.3-4                    | RC (12)                                                                                       | Y       | The manufacturer manages the<br>updates of the systems by means<br>of remote automatic, selectively by<br>type of machine or by activating<br>special functions at the request of<br>the user |  |  |  |
| Provision 5.3-5                    | RC (12)                                                                                       | Ν       | Check note at 5.3-4                                                                                                                                                                           |  |  |  |
| Provision 5.3-6                    | RC (9,12)                                                                                     | N       | Check note at 5.3-4                                                                                                                                                                           |  |  |  |

Туре А

# ENA Engineering Recommendation G99 Issue 1 Amendment 8 2021 Page 235

|                                                  |           |     | 1 490 200                              |  |  |
|--------------------------------------------------|-----------|-----|----------------------------------------|--|--|
| Provision 5.3-7                                  | M C (12)  | Y   |                                        |  |  |
| Provision 5.3-8                                  | M C (12)  | Ν   | Check note at 5.3-4                    |  |  |
| Provision 5.3-9                                  | R C (12)  | Ν   |                                        |  |  |
| Provision 5.3-10                                 | M (11,12) | Y   |                                        |  |  |
| Provision 5.3-11                                 | RC (12)   | Ν   |                                        |  |  |
| Provision 5.3-12                                 | RC (12)   | Ν   |                                        |  |  |
| Provision 5.3-13                                 | М         | Y   |                                        |  |  |
| Provision 5.3-14                                 | R C (3,4) | N/A |                                        |  |  |
| Provision 5.3-15                                 | R C (3,4) | N/A |                                        |  |  |
| Provision 5.3-16                                 | М         | Y   |                                        |  |  |
| 5.4 Securely store sensitive security parameters |           |     |                                        |  |  |
| Provision 5.4-1                                  | М         | Y   |                                        |  |  |
| Provision 5.4-2                                  | M(10)     | Y   |                                        |  |  |
| Provision 5.4-3                                  | М         | N/A | hard-coded identity not used in source |  |  |
| Provision 5.4-4                                  | М         | Y   |                                        |  |  |
| 5.5 Communicate securely                         |           |     |                                        |  |  |
| Provision 5.5-1                                  | М         | Y   |                                        |  |  |
| Provision 5.5-2                                  | R         | Y   |                                        |  |  |
| Provision 5.5-3                                  | R         | Y   |                                        |  |  |
| Provision 5.5-4                                  | R         | N   |                                        |  |  |
| Provision 5.5-5                                  | М         | Y   |                                        |  |  |
| Provision 5.5-6                                  | R         | Y   |                                        |  |  |
| Provision 5.5-7                                  | М         | Y   |                                        |  |  |
| Provision 5.5-8                                  | М         | Y   |                                        |  |  |
| 5.6 Minimize exposed attack surfaces             |           |     |                                        |  |  |
| Provision 5.6-1                                  | М         | Y   |                                        |  |  |
| Provision 5.6-2                                  | М         | Y   |                                        |  |  |
| Provision 5.6-3                                  | R         | Y   |                                        |  |  |
| Provision 5.6-4                                  | MC(13)    | N/A |                                        |  |  |
| Provision 5.6-5                                  | R         | Y   |                                        |  |  |
|                                                  |           |     |                                        |  |  |

#### ENA Engineering Recommendation G99 Issue 1 Amendment 9 2022 Page 236

| Page 236                                               |                                         |     |                                                                                      |  |  |  |
|--------------------------------------------------------|-----------------------------------------|-----|--------------------------------------------------------------------------------------|--|--|--|
| Provision 5.6-6                                        | R                                       | Y   |                                                                                      |  |  |  |
| Provision 5.6-7                                        | R                                       | Y   |                                                                                      |  |  |  |
| Provision 5.6-8                                        | R                                       | Ν   |                                                                                      |  |  |  |
| Provision 5.6-9                                        | R                                       | Y   |                                                                                      |  |  |  |
| 5.7 Ensure software integrity                          |                                         |     |                                                                                      |  |  |  |
| Provision 5.7-1                                        | R                                       | Ν   |                                                                                      |  |  |  |
| Provision 5.7-2                                        | R                                       | Ν   |                                                                                      |  |  |  |
| 5.8 Ensure that personal                               | 5.8 Ensure that personal data is secure |     |                                                                                      |  |  |  |
| Provision 5.8-1                                        | R                                       | N/A |                                                                                      |  |  |  |
| Provision 5.8-2                                        | М                                       | Y   | applicable to server/cloud services<br>and to the customer App for mobile<br>devices |  |  |  |
| Provision 5.8-3                                        | Μ                                       | Y   |                                                                                      |  |  |  |
| 5.9 Make systems resilier                              | nt to outages                           |     |                                                                                      |  |  |  |
| Provision 5.9-1                                        | R                                       | Y   |                                                                                      |  |  |  |
| Provision 5.9-2                                        | R                                       | Y   |                                                                                      |  |  |  |
| Provision 5.9-3                                        | R                                       | Y   |                                                                                      |  |  |  |
| 5.10 Examine system telemetry data                     |                                         |     |                                                                                      |  |  |  |
| Provision 5.10-1                                       | RC (6)                                  | Ν   |                                                                                      |  |  |  |
| 5.11 Make it easy for users to delete user data        |                                         |     |                                                                                      |  |  |  |
| Provision 5.11-1                                       | М                                       | N/A |                                                                                      |  |  |  |
| Provision 5.11-2                                       | R                                       | N/A |                                                                                      |  |  |  |
| Provision 5.11-3                                       | R                                       | N/A |                                                                                      |  |  |  |
| Provision 5.11-4                                       | R                                       | N/A |                                                                                      |  |  |  |
| 5.12 Make installation and maintenance of devices easy |                                         |     |                                                                                      |  |  |  |
| Provision 5.12-1                                       | R                                       | N/A | no installation /maintenance<br>operations are available to the end<br>user          |  |  |  |
| Provision 5.12-2                                       | R                                       | N/A | no installation /maintenance<br>operations are available to the end<br>user          |  |  |  |
| Provision 5.12-3                                       | R                                       | N/A | check note at 5.3-4                                                                  |  |  |  |
| 5.13 Validate input data                               |                                         |     |                                                                                      |  |  |  |
|                                                        |                                         |     |                                                                                      |  |  |  |

# ENA Engineering Recommendation G99 Issue 1 Amendment 8 2021

|                                                                            |        |   | Page 237                                                |  |  |
|----------------------------------------------------------------------------|--------|---|---------------------------------------------------------|--|--|
| Provision 5.13-1                                                           | М      | Y |                                                         |  |  |
| 6 Data protection provisions for consumer IoT                              |        |   |                                                         |  |  |
| Provision 6.1                                                              | м      | Y | it only applies to the server/cloud side of the service |  |  |
| Provision 6.2                                                              | MC (7) | Y | it only applies to the server/cloud side of the service |  |  |
| Provision 6.3                                                              | м      | Y | it only applies to the server/cloud side of the service |  |  |
| Provision 6.4                                                              | RC (6) | Y |                                                         |  |  |
| Provision 6.5                                                              | MC(6)  | Y |                                                         |  |  |
| Conditions:                                                                |        |   |                                                         |  |  |
| 1) passwords are used;                                                     |        |   |                                                         |  |  |
| 2) pre-installed passwords are used;                                       |        |   |                                                         |  |  |
| 3) software components are not updateable;                                 |        |   |                                                         |  |  |
| 4) the device is constrained;                                              |        |   |                                                         |  |  |
| 5) the device is not constrained;                                          |        |   |                                                         |  |  |
| 6) telemetry data being collected;                                         |        |   |                                                         |  |  |
| 7) personal data is processed on the basis of consumers' consent;          |        |   |                                                         |  |  |
| 8) the device allowing user authentication;                                |        |   |                                                         |  |  |
| 9) the device supports automatic updates and/or update notifications;      |        |   |                                                         |  |  |
| 10) a hard-coded unique per device identity is used for security purposes; |        |   |                                                         |  |  |
| 11) updates are delivered over a network interface;                        |        |   |                                                         |  |  |
| 12) an update mechanism is implemented;                                    |        |   |                                                         |  |  |
| 13) a debug interface is physically accessible.                            |        |   |                                                         |  |  |
| Status' Column:                                                            |        |   |                                                         |  |  |
| M: Mandatory provision                                                     |        |   |                                                         |  |  |

- R: Recommended provision
- M C: Mandatory and conditional provision
- R C: Recommended and conditional provision
- Support' Column:
- Y: Implemented
- N: Not implemented
- N/A: Not applicable