

Typical Application Instruction for LXP 3-6k Hybrid

	List	
1.	Battery configuration	1
2.	Working modes	2

1. Battery configuration

1.1 Lithium Battery

Step1: Pleasemake sure the battery input voltage is within the operation range:40-60Vdc; Step2: You can make sure the Lithium battery can be compatible with LXP 3-6K Hybrid ; Step3: Please make sure the PINs layout of both the inverter and battery are correct ; Step4: Please make sure the DIP configuration and comm cables among the batteries are correct ;

Step5: Please select the correct battery brand option via the LCD of Inverter .

Connection between inverter and battery

RJ45 Terminal Configuration of Battery Communication

-	Re	ed color switch	Blue color switch			
	Pin	Function Description	Pin	Function Description		
485&CAN DIP CT&METER	1	BAT 485 B	1	BAT 485 B		
	2	BAT 485 A	2	BAT 485 A		
	3	BAT CAN L	3	NC		
	4	BAT CAN H	4	BAT CAN H		
	5	NC	5	BAT CAN L		
	6	COLOR C	6	GND-S		
DRM DSP INV485	7	·····	7	NC		
	8	GND-S	8	2010/06/2		

09

Shenzhen Lux Power Technology Co., Ltd | www.luxpowertek.com | info@luxpowertek.com

Note: The new batch of inverter are with blue DIP ,and the PINs layout for the battery is different for the old batch with red DIP, just keep the correct PINs and re-make comms cable and disconnect the unused PINs if necessary .

1.2 Lead-acid Battery

Step1: Pleasemake sure the battery input voltage is within the operation range:40-60Vdc; Step2: Please set as Lead-acid battery mode via the LCD of Inverter .

Step3: Please confirm the charge and discharge parameters via the APP or Webserver The default settings show as below ,and you can change it according to the recommended value in the battery manual.

Lead-acid Battery Setting	Charge Voltage for Lead-Acid Battery	56	Set	Floating Voltage(V) 54	Set
	Charge Temperature Low Limit	0	Set	Charge Temperature High Limit 40	Set
	Charge Current Limit(A)	100	Set		
Lead-acid Battery Setting		(
	Discharge Cut-off Voltage(V) (?)	42	Set	Discharge Current Limit(A) (?) 100	Set
	Discharge Tempature Low Limit (?)	-20	Set	Discharge Temperature High Limit (?) 55	Set
	On Grid Dischause Dauste What	10	C-+	Charles In the Discussion of the	C-t

2. Working modes

2.1. Self-use mode: Default working mode ,the external CT or meter installation is required, and the PV power will be first used to supply load , and the excess power can be used to charge battery ,

♦ and if PV power > charge power+ load consumption, the excess part can be exported to grid;

♦ and if PV power < load consumption, the battery will discharge the insufficient part to take the load;</p>

♦ and if PV power + battery discharge power < load consumption, the insufficient part will be drawn from grid;</p>

♦ without the charge hours , the inverter will always work in self-use mode .

The default settings are shown as below:

AC Charge disable ,Charge Priority disable, Forced discharge disable;

	System Charge Power Rate(%) (?) 100		Set				Charg	e Last Ena	ble Disa	ole			
	,												
	Equalization Voltage(V) 0		Set			Equa	lization Period(Days) 0		Set			
	Equalization Time(Hours) 0		Set										
C Charge		_											
	AC Charge Enable Enable Disab	le		AC Charge Power Rate(%)	100		Set			AC Battery Charge Level(%	100		Set
	AC Charge Start Time 1 00 : 00	Set		AC Charge Start Time 2	00	: 00	Set			AC Charge Start Time	8 00	: 00	S
	AC Charge End Time 1 00 : 00	Set		AC Charge End Time 2	00	: 00	Set			AC Charge End Time	00	: 00	Se
Charge Priority		=1											
	Charge Priority (?) Enable Disab	le		Priority Charge Rate(%)	100		Set			Priority Charge Level(%) (?	100		Set
	Charge First Start Time 1 00 : 00	Set		Charge First Start Time 2	00	: 00	Set			Charge First Start Time	00	: 00	St
	Charge First End Time 1 00 : 00	Set		Charge First End Time 2	00	; 00	Set			Charge First End Time	00	: 00	S
ead-acid Battery	/ Setting												
	Charge Voltage for Lead-Acid Bat	tery 350	Set				Floating	/oltage(V)	0		Set		
	Charge Temperature Low L	imit 0	Set				Charge	Temperature	High Limit	40	Set		
	Charge Current Limi	t(A) 12	Set										

System Discharge Power Rate(%) (?) 100	Set	On-grid Discharge Cut-off SOC (?)	10	Set	Off-grid Discharge Cut-off SOC	0		Set
Forced Discharge	Disable	Forced Discharge Power Rate(6) 100	Set	Forced Discharge Battery Level(%	5) 20		Set
Forced Discharge Start Time 1 00 :	00 Set	Forced Discharge Start Time 2	0 : 00	Set	Forced Discharge Start Time 3		00	Set
Forced Discharge End Time 1 00 :	00 Set	Forced Discharge End Time 2	0 : 00	Set	Forced Discharge End Time 3)	00	Set
Lead-acid Battery Setting Discharge Cut-off Volt	age(V) (7) 300	Set		Discharge Current Limit(A) (?)	12	Set		
Discharge Tempature Low	v Limit (?) -20	Set		Discharge Temperature High Limit (?)	55	Set		
On Grid Discharge Der	ate Vbat 0	Set		Start Discharge P_import	0	Set		

You can also adjust the DOD of the battery by changing "On-grid discharge cut-off SOC", It is 10% and DOD is 90% as default (DOD=100% - On-grid discharge cut-off SOC). For example, if you want the DOD to be 80%, you can just set "On-grid discharge cut-off SOC" to 20%

Discharge Setting								
System Discharge Power Rate(%) (?)	100		Set	On-grid Discharge Cut-off SOC (?) 20	Set	Off-grid Discharge Cut-off SOC 0		Set
Forced Discharge								
Forced Discharge Enable Enable Disable			Forced Discharge Power Rate(%) 100 Set		Forced Discharge Battery Level(%) 20	Forced Discharge Battery Level(%) 20		
Forced Discharge Start Time 1	00	: 00	Set	Forced Discharge Start Time 2 00 : 00	Set	Forced Discharge Start Time 3 00	: 00	Set
Forced Discharge End Time 1	00	: 00	Set	Forced Discharge End Time 2 00 : 00	Set	Forced Discharge End Time 3 00	: 00	Set

2.2. **Charge first mode:** If you need to make sure the PV power can be used to charge battery first while the grid power is on ,but you don't want to use grid power to charge the battery , you can set Charge Priority enable

◆ and if PV power < Charge power, then the load will draw power from the grid;

♦ and if PV power > charge power,but PV power < Charge power + Load consumption , the insufficient part will be drawn from grid;

♦ and if PV power > Charge power + Load consumption , the excess part can be exported to grid;

♦ within the charge hours , the battery won't discharge power to take loads .

The settings should be like this:

Charge Priority enable, Charge hours, Priority charge rate and Priority charge Level;

harge Setting	g									
	System Charge Power Rate(%) (?)	100	Set			Charge La	ast Enable Disable			
	Equalization Voltage(V)	0	Set		Equi	lization Period(Day	ys) 0 Set			
	Equalization Time(Hours)	0	Set							
AC Charge	AC Charge Enable Enable	Disable		AC Charge Power Rate(%)	100	Set	AC Battery Charge Level(%)	100		Set
	AC Charge Start Time 1 00	: 00 Set		AC Charge Start Time 2 00	: 00	Set	AC Charge Start Time 3	00	: 00	Set
	AC Charge End Time 1 00	: 00 Set		AC Charge End Time 2 00	: 00	Set	AC Charge End Time 3	00	: 00	Set
harge Priority					00.044			(Loop)		C 200
	Charge Priority (?) Enable	Disable		Priority Charge Rate(%)	100	Set	Priority Charge Level(%) (?)	100		Set
	Charge First Start Time 1 08	: 00 Set		Charge First Start Time 2 00	: 00	Set	Charge First Start Time 3	00	: 00	Set
	Charge First End Time 1 18	: 00 Set		Charge First End Time 2 00	: 00	Set	Charge First End Time 3	00	: 00	Set

That means the PV power will prioritize to charge the battery during the charge hours: 08:00-18:00, and if the battery SOC reaches priority charge level(100%) in advance, the PV power will be used to take loads ,and battery won't discharge power to take loads during the charge hours even though the PV power is insufficient.

2.3. Charge and discharge according to the price at different time period:

If you need to charge the battery when grid electricity price is low , and discharge power when grid electricity price is high

The settings could be like this:

For example , Low price time period: 00:00-04:00, 12:00-16:00, and High price time period: 04:00-12:00, 16:00-19:00

That means the grid power is allowed to charge the battery during time period 00:00-04:00 and 12:00-16:00, and when the PV power is available, the PV power can be used to charge battery first, but the battery won't discharge during the charge hours. And out of the charge hours, the battery will discharge based on the load consumption, but if you want discharge power to the grid with a certain power, you can enable "Forced discharge" function

	System Charge Power Rate(%) (?)	100	Set	Charge L	ast Enable Disable
	Equalization Voltage(V)	0	Set	Equalization Period(Da	o Set
	Equalization Time(Hours)	0	Set		
AC Charge	AC Charge Enable Enable	Disable		AC Charge Power Rate(%) 100 Set	AC Battery Charge Level(%) 100 Set
	AC Charge Start Time 1 00	: 00 Set		AC Charge Start Time 2 12 : 00 Set	AC Charge Start Time 3 00 : 00 Set
	AC Charge End Time 1 04	: 00 Set		AC Charge End Time 2 16 : 00 Set	AC Charge End Time 3 00 : 00 Set
Charge Priority					
	Charge Priority (?) Enable	Disable		Priority Charge Rate(%) 100 Set	Priority Charge Level(%) (?) 100 Set
	Charge First Start Time 1 12	: 00 Set		Charge First Start Time 2 00 : 00 Set	Charge First Start Time 3 00 : 00 Set
	Charge First End Time 1	· on Set		Charge First End Time 2 00 . 00 Set	Charge First End Time 3 00

2.4. **Zero export:** If you don't want to export the excess PV power, you can set "Feed in grid disable", and if the export power should be 0 W strictly, you can set "Fast zero export enable".

EPS Frequency Set(Hz) (?)	50	✓ Set			
Power Backup (?)	Enable Disable		Seamless EPS switching	Enable Disable	
Micro-Grid	Enable Disable		PV Grid Off (?)	Enable Disable	
Feed-in Grid	Enable Disable		Feed-in Grid Power(%)	0	Set
Fast Zero Export	Enable Disable		Normal / Standby	Normal Standby	
Set System Type (?)	1 Phase Primary	✓ Set	Battery Shared	Enable Disable	
Set Composed Phase (?)	Phase R	✓ Phase R	✓ Set		
Max AC Input Power	65535	Set			

With this solution, the external CT should be installed.

If you just set "Feed in grid disable", there may be small export power when the load consumption suddenly changes. And if you enable "Fast zero export " function, the export power can be 0Watt strictly, but sometimes there may be small import power when the load changes suddenly.

2.5. **Power back-up:** If the grid power is available but unstable , you can enable Power back function , so there will be EPS output at EPS port when the grid power is out .

Application Setting			
EPS Frequency Set(Hz) (?)	50	✓ Set	
Power Backup (?)	Enable Disable	Seamless EPS switching	Enable Disable
Micro-Grid	Enable Disable	PV Grid Off (?)	Enable Disable
Feed-in Grid	Enable Disable	Feed-in Grid Power(%)	100 Set
Fast Zero Export	Enable Disable	Normal / Standby	Normal Standby
Set System Type (?)	Subordinates	✓ Set Battery Shared	Enable Disable
Set Composed Phase (?)	Phase R	✓ Phase R ✓ Set	
Max. AC Input Power	65535	Set	

The default output voltage is 230Vac , so you can test before connecting the loads to EPS port.

2.6. **Micro-grid mode:** If the grid power is unavailable and it is totally an off-grid system, you can enable "Power backup" and at the same time please enable "Micro-grid" function, so when the generator is on, the battery will get charged automatically

Application Setting					
EPS Frequency Set(Hz) (?)	50	✓ Set			
Power Backup (?)	Enable Disable		Seamless EPS switching	Enable Disable	
Micro-Grid	Enable Disable		PV Grid Off (?)	Enable Disable	
Feed-in Grid	Enable Disable		Feed-in Grid Power(%)	100	Set
Fast Zero Export	Enable Disable		Normal / Standby	Normal Standby	
Set System Type (?)	Subordinates	✓ Set	Battery Shared	Enable Disable	
Set Composed Phase (?)	Phase R	✓ Phase R	✓ Set		
Max. AC Input Power	65535	Set			

If the capacity of the generator is not powerful enough and you need to limit the input power ,then the external CT is needed to connect, or you can also just limit the charge power.

Shenzhen Lux Power Technology Co., Ltd | www.luxpowertek.com | info@luxpowertek.com

Tips: If you need to read more of Generator Auto-start function ,you can refer to the

" Guidance for Auto Starting Generator"